
Oliver Goldmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9403586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dysregulated Immunometabolism Is Associated with the Generation of Myeloid-Derived Suppressor Cells in <i>Staphylococcus aureus</i> Chronic Infection. Journal of Innate Immunity, 2022, 14, 257-274.	3.8	7
2	Cytosolic Sensing of Intracellular <i>Staphylococcus aureus</i> by Mast Cells Elicits a Type I IFN Response That Enhances Cell-Autonomous Immunity. Journal of Immunology, 2022, 208, 1675-1685.	0.8	3
3	Mesaconate is synthesized from itaconate and exerts immunomodulatory effects in macrophages. Nature Metabolism, 2022, 4, 524-533.	11.9	32
4	Staphylococcus aureus Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses. Frontiers in Immunology, 2020, 11, 1579.	4.8	12
5	Liposomal mupirocin holds promise for systemic treatment of invasive Staphylococcus aureus infections. Journal of Controlled Release, 2019, 316, 292-301.	9.9	27
6	Mast cells as protectors of health. Journal of Allergy and Clinical Immunology, 2019, 144, S4-S18.	2.9	88
7	Longitudinal proliferation mapping in vivo reveals NADPH oxidase-mediated dampening of Staphylococcus aureus growth rates within neutrophils. Scientific Reports, 2019, 9, 5703.	3.3	7
8	Homophilic protein interactions facilitate bacterial aggregation and IgG-dependent complex formation by the Streptococcus canis M protein SCM. Virulence, 2019, 10, 194-206.	4.4	2
9	Staphylococcus aureus strategies to evade the host acquired immune response. International Journal of Medical Microbiology, 2018, 308, 625-630.	3.6	49
10	An Interferon Signature Discriminates Pneumococcal From Staphylococcal Pneumonia. Frontiers in Immunology, 2018, 9, 1424.	4.8	11
11	Host-inherent variability influences the transcriptional response of Staphylococcus aureus during in vivo infection. Nature Communications, 2017, 8, 14268.	12.8	58
12	Identification of a Novel Subset of Myeloid-Derived Suppressor Cells During Chronic Staphylococcal Infection That Resembles Immature Eosinophils. Journal of Infectious Diseases, 2017, 216, 1444-1451.	4.0	48
13	α-Hemolysin enhances <i>Staphylococcus aureus</i> internalization and survival within mast cells by modulating the expression of β1 integrin. Cellular Microbiology, 2016, 18, 807-819.	2.1	29
14	Iron-chelating agent desferrioxamine stimulates formation of neutrophil extracellular traps (NETs) in human blood-derived neutrophils. Bioscience Reports, 2016, 36, .	2.4	42
15	Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. Microbiology (United Kingdom), 2015, 161, 621-627.	1.8	30
16	Global Regulation of Gene Expression by the MafR Protein of Enterococcus faecalis. Frontiers in Microbiology, 2015, 6, 1521.	3.5	22
17	High-Resolution Transcriptomic Analysis of the Adaptive Response of Staphylococcus aureus during Acute and Chronic Phases of Osteomyelitis. MBio, 2014, 5, .	4.1	65
18	The expanding world of extracellular traps: not only neutrophils but much more. Frontiers in Immunology, 2012, 3, 420.	4.8	166

#	Article	IF	CITATIONS
19	Staphylococcus aureus Evades the Extracellular Antimicrobial Activity of Mast Cells by Promoting Its Own Uptake. Journal of Innate Immunity, 2011, 3, 495-507.	3.8	76
20	Ageâ€related susceptibility to <i>Streptococcus pyogenes</i> infection in mice: underlying immune dysfunction and strategy to enhance immunity. Journal of Pathology, 2010, 220, 521-529.	4.5	14
21	Inducible Cyclooxygenase Released Prostaglandin E2Modulates the Severity of Infection Caused byStreptococcuspyogenes. Journal of Immunology, 2010, 185, 2372-2381.	0.8	42
22	<i>Streptococcus pyogenes</i> induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway. Cellular Microbiology, 2009, 11, 138-155.	2.1	80
23	Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood, 2008, 111, 3070-3080.	1.4	491