List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9403557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of <scp>SnO₂</scp> / <scp>TiO₂</scp> micro belt fibers from polymer composite precursors and their applications in Liâ€ion batteries*. Polymer Engineering and Science, 2022, 62, 360-372.	1.5	5
2	Forcespun polyvinylpyrrolidone/copper and polyethylene oxide/copper composite fibers and their use as antibacterial agents. Journal of Applied Polymer Science, 2022, 139, 51773.	1.3	4
3	On the thermogravimetric analysis of polymers: Polyethylene oxide powder and nanofibers. Journal of Applied Polymer Science, 2022, 139, 52055.	1.3	4
4	Centrifugally spun TiO2/C composite fibers prepared from TiS2/PAN precursor fibers as binder-free anodes for LIBS. Journal of Physics and Chemistry of Solids, 2021, 149, 109795.	1.9	14
5	Effect of Lanthanum Doping on the reactivity of unsupported CoMoS2 catalysts. Applied Catalysis A: General, 2021, 611, 117891.	2.2	5
6	Cover Image, Volume 138, Issue 18. Journal of Applied Polymer Science, 2021, 138, 50634.	1.3	0
7	Antibacterial activities of centrifugally spun polyethylene oxide/silver composite nanofibers. Polymers for Advanced Technologies, 2021, 32, 2327-2338.	1.6	16
8	Recent developments in centrifugally spun composite fibers and their performance as anode materials for lithium-ion and sodium-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 266, 115024.	1.7	13
9	The Effect of Solvent and Molecular Weight on the Morphology of Centrifugally Spun Poly(vinylpyrrolidone) Nanofibers. Fibers and Polymers, 2021, 22, 2394-2403.	1.1	11
10	Performance and morphology of centrifugally spun Co3O4/C composite fibers for anode materials in lithium-ion batteries. Journal of Materials Science, 2021, 56, 16010-16027.	1.7	8
11	Centrifugally spun carbon fibers prepared from aqueous poly(vinylpyrrolidone) solutions as binderâ€free anodes in lithiumâ€ion batteries. Journal of Applied Polymer Science, 2021, 138, 50396.	1.3	7
12	The Effect of Carbon Coatings on the Electrochemical Performance of Composite Electrodes. ECS Transactions, 2020, 97, 93-104.	0.3	1
13	The Use of Succinonitrile as an Electrolyte Additive for Composite-Fiber Membranes in Lithium-Ion Batteries. Membranes, 2020, 10, 45.	1.4	6
14	Spectroscopic investigations on PVDFâ€Fe ₂ O ₃ nanocomposites. Journal of Applied Polymer Science, 2020, 137, 48907.	1.3	24
15	The Performance of SiO2 and TiO2 Nanoparticles as Lubricant Additives in Sunflower Oil. Lubricants, 2020, 8, 10.	1.2	49
16	In situ synthesis of Fe3O4-reinforced carbon fiber composites as anodes in lithium-ion batteries. Journal of Materials Science, 2019, 54, 13479-13490.	1.7	41
17	Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries. Applied Sciences (Switzerland), 2019, 9, 4032.	1.3	23
18	Fabrication and characterization of centrifugally spun poly(acrylic acid) nanofibers. Journal of Applied Polymer Science, 2019, 136, 47480.	1.3	20

#	Article	IF	CITATIONS
19	Highâ€Throughput Production With Improved Functionality and Graphitization of Carbon Fine Fibers Developed from Sodium Chlorideâ€Polyacrylonitrile Precursors. Polymer Engineering and Science, 2018, 58, 2047-2054.	1.5	5
20	Production of carbon fibers through Forcespinning® for use as anode materials in sodium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 70-75.	1.7	18
21	MoS ₂ and MoO ₂ Loaded Carbon Microfibers as Anode Materials for Lithium-Ion and Sodium-Ion Batteries. ECS Transactions, 2018, 85, 357-368.	0.3	5
22	The Use of Mixed Organic/Ionic Liquid Electrolytes with Forcespun Metal Oxides/Carbon Microfiber Electrodes in Lithium Ion Batteries. ECS Transactions, 2018, 85, 387-394.	0.3	1
23	Metal Sulfide/Carbon Composite Fibers as Anode Materials for Lithium Ion Batteries. ECS Transactions, 2018, 85, 275-284.	0.3	3
24	A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochimica Acta, 2017, 224, 608-621.	2.6	71
25	Forcespinning: An Alternative Method to Produce Metal-Oxides/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries. ECS Transactions, 2017, 77, 383-390.	0.3	1
26	Optical and X-ray induced luminescence from Eu3+ doped La2Zr2O7 nanoparticles. Journal of Alloys and Compounds, 2017, 693, 719-729.	2.8	40
27	Effect of Polymer Concentration, Rotational Speed, and Solvent Mixture on Fiber Formation Using Forcespinning®. Fibers, 2016, 4, 20.	1.8	40
28	Grapheneâ€Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016, 6, 1502159.	10.2	306
29	ForceSpinning of polyacrylonitrile for mass production of lithiumâ€ion battery separators. Journal of Applied Polymer Science, 2016, 133, .	1.3	54
30	Centrifugal Spinning: An Alternative for Large Scale Production of Silicon–Carbon Composite Nanofibers for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2016, 8, 29365-29372.	4.0	22
31	Multichannel hollow structure for improved electrochemical performance of TiO 2 /Carbon composite nanofibers as anodes for lithium ion batteries. Journal of Alloys and Compounds, 2016, 686, 733-743.	2.8	77
32	Forcespinning: A new method for the mass production of Sn/C composite nanofiber anodes for lithium ion batteries. Solid State Ionics, 2016, 286, 72-82.	1.3	76
33	Composite Nanofibers as Advanced Materials for Li-ion, Li-O2 and Li-S Batteries. Electrochimica Acta, 2016, 192, 529-550.	2.6	107
34	Nanofiber-Based Membrane Separators for Lithium-ion Batteries. Materials Research Society Symposia Proceedings, 2015, 1718, 157-161.	0.1	3
35	Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose, 2015, 22, 1311-1320.	2.4	99
36	The production of carbon nanotube reinforced poly(vinyl) butyral nanofibers by the Forcespinning® method. Polymer Engineering and Science, 2015, 55, 81-87.	1.5	36

#	Article	IF	CITATIONS
37	Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 2451-2458.	1.2	45
38	Electrospun nanofiberâ€coated separator membranes for lithiumâ€ion rechargeable batteries. Journal of Applied Polymer Science, 2013, 129, 1939-1951.	1.3	86
39	Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning. Journal of Materials Science, 2013, 48, 2690-2700.	1.7	64
40	Polyvinylidene fluorideâ€ <i>co</i> â€chlorotrifluoroethylene and polyvinylidene fluorideâ€ <i>co</i> â€hexafluoropropylene nanofiberâ€coated polypropylene microporous battery separator membranes. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 349-357.	2.4	35
41	Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon, 2013, 51, 185-194.	5.4	88
42	Electrospun carbon nanofibers decorated with various amounts of electrochemically-inert nickel nanoparticles for use as high-performance energy storage materials. RSC Advances, 2012, 2, 192-198.	1.7	48
43	α-Fe ₂ O ₃ Nanoparticle-Loaded Carbon Nanofibers as Stable and High-Capacity Anodes for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 2672-2679.	4.0	194
44	The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry. AICHE Journal, 2012, 58, 302-311.	1.8	35
45	Environmental Effects on the Structural Recovery Responses of an Epoxy Resin after Carbon Dioxide Pressure Jumps: Intrinsic Isopiestics, Asymmetry of Approach, and Memory Effect. Macromolecules, 2011, 44, 3828-3839.	2.2	10
46	Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries. Polymer Reviews, 2011, 51, 239-264.	5.3	182
47	Sulfonated Polystyrene Fiber Network-Induced Hybrid Proton Exchange Membranes. ACS Applied Materials & Interfaces, 2011, 3, 3732-3737.	4.0	63
48	Highly proton conductive electrolyte membranes: Fiber-induced long-range ionic channels. Electrochemistry Communications, 2011, 13, 1005-1008.	2.3	40
49	Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2682.	15.6	2,057
50	Superacidic Electrospun Fiberâ€Nafion Hybrid Proton Exchange Membranes. Advanced Energy Materials, 2011, 1, 1133-1140.	10.2	76
51	Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. Journal of Power Sources, 2011, 196, 436-441.	4.0	137
52	Structural, mechanical and osmotic properties of injectable hyaluronan-based composite hydrogels. Polymer, 2010, 51, 4424-4430.	1.8	21
53	Rheological Properties of Crossâ€Linked Hyaluronan–Gelatin Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 20-28	2.1	210
54	A comparison of three different methods for measuring both normal stress differences of viscoelastic liquids in torsional rheometers. Rheologica Acta, 2009, 48, 191-200.	1.1	22

#	Article	IF	CITATIONS
55	Errors induced in quartz crystal mass uptake measurements by nongravimetric effects: Considerations beyond the EerNisse caution. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 801-814.	2.4	15
56	Effects of confinement on material behaviour at the nanometre size scale. Journal of Physics Condensed Matter, 2005, 17, R461-R524.	0.7	981
57	A comparison of concentration-glasses and temperature-hyperquenched glasses: CO2-formed glass versus temperature-formed glass. Polymer, 2004, 45, 5629-5634.	1.8	25
58	Modeling of the viscoelastic behavior of amorphous polymers by the differential and integration fractional method: the relaxation spectrum H(I,,). Polymer, 2003, 44, 7199-7208.	1.8	34
59	Analysis of the development of isotropic residual stresses in a bismaleimide/spiro orthocarbonate thermosetting resin for composite materials. Journal of Applied Polymer Science, 2003, 88, 227-244.	1.3	31
60	Effect of chemical activity jumps on the viscoelastic behavior of an epoxy resin: Physical aging response in carbon dioxide pressure jumps. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2050-2064.	2.4	28