Igor V Shevchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9402866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Concerning the effect of radial thermal conductivity in a self-similar solution for rotating cone-disk systems. International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, 204-225.	1.6	9
2	Self-similar analysis of Eyring-Powell fluid in boundary layer without simplification. Chinese Journal of Physics, 2022, 75, 28-37.	2.0	5
3	Analytical Modeling and Symmetry Analysis of Stable Film Boiling in Nanofluids. Mathematical Engineering, 2022, , 121-159.	0.1	0
4	Symmetry Analysis of Boundary Layer Flows (Parabolic Flows) of Nanofluids. Mathematical Engineering, 2022, , 39-91.	0.1	0
5	Physical Foundations and Mathematical Models of Transport Processes in Nanofluids. Mathematical Engineering, 2022, , 1-12.	0.1	0
6	Instantaneous Transition to Film Boiling in Ordinary Fluids and Nanofluids on a Vertical Surface. Mathematical Engineering, 2022, , 161-200.	0.1	0
7	Simulation of the lubricant flow in thin slot channels with a moving wall under slip boundary conditions. Physics of Fluids, 2022, 34, .	1.6	2
8	Shock Wave in van der Waals Gas. Journal of Non-Equilibrium Thermodynamics, 2022, 47, 255-267.	2.4	7
9	Analytical simulation of normal shock waves in turbulent flow. Physics of Fluids, 2022, 34, .	1.6	2
10	Symmetry and self-similar analysis of natural convection of van der Waals gases over a vertical plate. International Journal of Heat and Mass Transfer, 2022, 195, 123114.	2.5	5
11	Heat transfer and hydrodynamics of slip confusor flow under second-order boundary conditions. Journal of Thermal Analysis and Calorimetry, 2021, 144, 955-961.	2.0	3
12	Comparison analysis of analytical and lattice Boltzmann methods for simulation of turbulence decay in flows in converging and diverging channels. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e201900301.	0.9	0
13	Heat Transfer and Fluid Flow During Instantaneous Unsteady Condensation. Journal of Thermophysics and Heat Transfer, 2021, 35, 279-287.	0.9	1
14	An Analytical Investigation of Natural Convection of a Van Der Waals Gas over a Vertical Plate. Fluids, 2021, 6, 121.	0.8	7
15	Unsteady convective heat transfer in nanofluids at instantaneous transition to film boiling. International Journal of Thermal Sciences, 2021, 164, 106873.	2.6	11
16	Heat transfer and fluid flow of helium coolant in a model of the core zone of a pebble-bed nuclear reactor. Nuclear Engineering and Design, 2021, 377, 111148.	0.8	3
17	Convective Instability in Slip Flow in a Vertical Circular Porous Microchannel. Transport in Porous Media, 2021, 138, 661-678.	1.2	0
18	An Integral Method for Natural Convection of Van Der Waals Gases over a Vertical Plate. Energies, 2021, 14, 4537.	1.6	6

#	Article	IF	CITATIONS
19	Convective instability of nanofluids in vertical circular porous microchannels. Chaos, Solitons and Fractals, 2021, 149, 111093.	2.5	4
20	Darcy–Brinkman–Forchheimer Model for Film Boiling in Porous Media. Transport in Porous Media, 2020, 134, 503-536.	1.2	12
21	Conditions of convective instability in a vertical circular microchannel with slippage effects. International Communications in Heat and Mass Transfer, 2020, 119, 104954.	2.9	2
22	Unsteady theory of heat transfer and fluid flow during instantaneous transition to film boiling. International Journal of Thermal Sciences, 2020, 153, 106345.	2.6	4
23	Heat Transfer in Porous Microchannels with Second-Order Slipping Boundary Conditions. Transport in Porous Media, 2019, 129, 673-699.	1.2	15
24	Heat transfer due to revolving flow of Reiner-Rivlin fluid over a stretchable surface. Thermal Science and Engineering Progress, 2019, 10, 327-336.	1.3	33
25	Heat transfer of incompressible flow in a rotating microchannel with slip boundary conditions of second order. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1786-1814.	1.6	8
26	Lie group analysis and general forms of self-similar parabolic equations for fluid flow, heat and mass transfer of nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 135, 223-235.	2.0	15
27	Renormalization group analysis of heat transfer in the presence of endothermic and exothermic chemical reactions. Mathematical Biosciences and Engineering, 2019, 16, 2049-2062.	1.0	0
28	Instability of a vapor layer on a vertical surface at presence of nanoparticles. Applied Thermal Engineering, 2018, 139, 87-98.	3.0	14
29	Turbulent incompressible microflow between rotating parallel plates. European Journal of Mechanics, B/Fluids, 2018, 71, 35-46.	1.2	5
30	Application of renormalization group analysis to two-phase turbulent flows with solid dust particles. Journal of Mathematical Physics, 2018, 59, .	0.5	1
31	Mixed Convection in Vertical Flat and Circular Porous Microchannels. Transport in Porous Media, 2018, 124, 919-941.	1.2	25
32	Prandtl Number Effect on the Laminar Convective Heat Transfer From a Rotating Disk. Journal of Heat Transfer, 2017, 139, .	1.2	7
33	Self-similar analysis of fluid flow, heat, and mass transfer at orthogonal nanofluid impingement onto a flat surface. Physics of Fluids, 2017, 29, 052005.	1.6	12
34	Mixed convection in a vertical circular microchannel. International Journal of Thermal Sciences, 2017, 121, 1-12.	2.6	32
35	Perspective of mathematical modeling and research of targeted formation of disperse phase clusters in working media for the next-generation power engineering technologies. AIP Conference Proceedings, 2017, , .	0.3	13
36	Mixed convection in a vertical flat microchannel. International Journal of Heat and Mass Transfer, 2017, 106, 1164-1173.	2.5	28

#	Article	IF	CITATIONS
37	Dean instability of nanofluids with radial temperature and concentration non-uniformity. Physics of Fluids, 2016, 28, .	1.6	20
38	Symmetry analysis for film boiling of nanofluids on a vertical plate using a nonlinear approach. Journal of Molecular Liquids, 2016, 223, 156-164.	2.3	18
39	Centrifugal instability of nanofluids with radial temperature and concentration non-uniformity between co-axial rotating cylinders. European Journal of Mechanics, B/Fluids, 2016, 60, 90-98.	1.2	9
40	Modelling of Convective Heat and Mass Transfer in Rotating Flows. Mathematical Engineering, 2016, , .	0.1	28
41	Overview of Rotating Flows. Mathematical Engineering, 2016, , 1-9.	0.1	1
42	Forced External Flow Over a Rotating Disk. Mathematical Engineering, 2016, , 81-126.	0.1	0
43	Heat and Mass Transfer in Rotating Cone-and-Disk Systems for Laminar Flows. Mathematical Engineering, 2016, , 127-143.	0.1	2
44	Heat and Mass Transfer of a Rotating Disk for Large Prandtl and Schmidt Numbers. Mathematical Engineering, 2016, , 145-170.	0.1	0
45	Varying Aspect Ratio Two-Pass Internal Ribbed Cooling Channels with 180°ÂBends. Mathematical Engineering, 2016, , 193-231.	0.1	Ο
46	Mathematical Modeling of Convective Heat Transfer in Rotating-Disk Systems. Mathematical Engineering, 2016, , 11-36.	0.1	0
47	Free Rotating Disk. Mathematical Engineering, 2016, , 37-79.	0.1	0
48	Heat transfer in stable film boiling of a nanofluid over a vertical surface. International Journal of Thermal Sciences, 2015, 92, 106-118.	2.6	35
49	Theoretical investigation of steady isothermal slip flow in a curved microchannel with a rectangular cross-section and constant radii of wall curvature. European Journal of Mechanics, B/Fluids, 2015, 54, 87-97.	1.2	14
50	An analytical and numerical study on the start-up flow of slightly rarefied gases in a parallel-plate channel and a pipe. Physics of Fluids, 2015, 27, .	1.6	23
51	Thermocapillary instability in an evaporating two-dimensional thin layer film. International Journal of Heat and Mass Transfer, 2015, 91, 77-88.	2.5	17
52	Start-up slip flow in a microchannel with a rectangular cross section. Theoretical and Computational Fluid Dynamics, 2015, 29, 351-371.	0.9	20
53	Heat transfer at film condensation of moving vapor with nanoparticles over a flat surface. International Journal of Heat and Mass Transfer, 2015, 82, 316-324.	2.5	32
54	Numerical Study of Convective Heat Transfer Enhancement in a Pipe Rotating Around a Parallel Axis. Journal of Heat Transfer, 2014, 136, .	1.2	53

#	Article	IF	CITATIONS
55	Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface. Journal of Fluid Mechanics, 2014, 738, 492-521.	1.4	5
56	Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate. Applied Thermal Engineering, 2014, 73, 391-398.	3.0	38
57	On flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular channel with ribs at 45°. Heat and Mass Transfer, 2013, 49, 679-694.	1.2	61
58	Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. International Journal of Thermal Sciences, 2013, 67, 1-30.	2.6	92
59	The Effects of Ribs and Tip Wall Distance on Heat Transfer for a Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel. Journal of Turbomachinery, 2013, 135, .	0.9	34
60	Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge. Journal of Turbomachinery, 2013, 135, 0110271-110278.	0.9	45
61	Modeling Leftward Flow in the Embryonic Node. , 2013, , .		1
62	Transient Thermal Field Measurements in a High Aspect Ratio Channel Related to Transient Thermochromic Liquid Crystal Experiments. Journal of Turbomachinery, 2012, 134, .	0.9	19
63	Symmetry analysis and self-similar forms of fluid flow and heat-mass transfer in turbulent boundary layer flow of a nanofluid. Physics of Fluids, 2012, 24, .	1.6	44
64	Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels. Heat and Mass Transfer, 2012, 48, 735-748.	1.2	51
65	Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel. Journal of Heat Transfer, 2011, 133, .	1.2	71
66	Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge. , 2011, , .		2
67	Self-similar analysis of fluid flow and heat-mass transfer of nanofluids in boundary layer. Physics of Fluids, 2011, 23, 082002.	1.6	60
68	Laminar Heat and Mass Transfer in Rotating Cone-and-Plate Devices. Journal of Heat Transfer, 2011, 133,	1.2	21
69	Turbulent heat and mass transfer over a rotating disk for the Prandtl or Schmidt numbers much larger than unity: an integral method. Heat and Mass Transfer, 2009, 45, 1313-1321.	1.2	28
70	Laminar Fluid Flow and Heat Transfer in a Gap Between a Disk and a Cone that Touches the Disk with Its Apex. Lecture Notes in Applied and Computational Mechanics, 2009, , 179-192.	2.0	1
71	Modelling of Fluid Flow and Heat Transfer in Rotating-Disk Systems. Lecture Notes in Applied and Computational Mechanics, 2009, , 11-31.	2.0	1
72	General Characteristic of Rotating-Disk Systems. Lecture Notes in Applied and Computational Mechanics, 2009, , 1-9.	2.0	1

#	Article	IF	CITATIONS
73	Free Rotating Disk. Lecture Notes in Applied and Computational Mechanics, 2009, , 33-76.	2.0	2
74	External Flow Imposed over a Rotating Disk. Lecture Notes in Applied and Computational Mechanics, 2009, , 101-146.	2.0	0
75	Outward Underswirled and Overswirled Radial Flow Between Parallel Co-rotating Disks. Lecture Notes in Applied and Computational Mechanics, 2009, , 147-177.	2.0	0
76	Convective Heat and Mass Transfer in Rotating Disk Systems. Lecture Notes in Applied and Computational Mechanics, 2009, , .	2.0	80
77	Unsteady Laminar Heat Transfer of a Free Rotating Disk. Lecture Notes in Applied and Computational Mechanics, 2009, , 77-100.	2.0	0
78	A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating-disk systems. Heat and Mass Transfer, 2008, 44, 1409-1415.	1.2	19
79	The Effect of Ribs and Tip Wall Distance on Heat Transfer for a Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel. , 2008, , .		10
80	Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel. , 2008, , .		12
81	Transient Thermal Field Measurements in a High Aspect Ratio Channel Related to Transient Thermochromic Liquid Crystal Experiments. , 2007, , 623.		5
82	Unsteady conjugate laminar heat transfer of a rotating non-uniformly heated disk: Application to the transient experimental technique. International Journal of Heat and Mass Transfer, 2006, 49, 3530-3537.	2.5	28
83	Rotating disk heat transfer in a fluid swirling as a forced vortex. Heat and Mass Transfer, 2005, 41, 1112-1121.	1.2	29
84	A new type of the boundary condition allowing analytical solution of the thermal boundary layer equation. International Journal of Thermal Sciences, 2005, 44, 374-381.	2.6	14
85	Aerodynamics and Turbulent Flow Heat Exchange in the Rotary Disk Air Cleaner. Heat Transfer Research, 2005, 36, 104-113.	0.9	2
86	Laminar Heat Transfer of a Swirled Flow in a Conical Diffuser. Self-similar Solution. Fluid Dynamics, 2004, 39, 42-46.	0.2	11
87	A Self-Similar Solution of Navier–Stokes and Energy Equations for Rotating Flows between a Cone and a Disk. High Temperature, 2004, 42, 104-110.	0.1	12
88	Unsteady-State Laminar Heat Transfer in a Rotating Disk: Self- Similar Solution. High Temperature, 2004, 42, 592-595.	0.1	5
89	Transient laminar conjugate heat transfer of a rotating disk: theory and numerical simulations. International Journal of Heat and Mass Transfer, 2004, 47, 3577-3581.	2.5	29
90	Laminar forced convection in curved channel with vortex structures. Journal of Thermal Science, 2004, 13, 143-150.	0.9	5

#	Article	IF	CITATIONS
91	Heat transfer and fluid flow over a single disk in a fluid rotating as a rigid body. Journal of Thermal Science, 2004, 13, 279-282.	0.9	1
92	Exact Solution of the Heat Transfer Problem for a Rotating Disk under Uniform Jet Impingement. Fluid Dynamics, 2003, 38, 18-27.	0.2	3
93	Impingement Heat Transfer over a Rotating Disk: Integral Method. Journal of Thermophysics and Heat Transfer, 2003, 17, 291-293.	0.9	30
94	Impinging Jet Heat Transfer Over a Rotating Disk: Exact Solution and Experiments. , 2002, , .		2
95	An exact solution for heat transfer of a jet co-axially impinging on a rotating disk and its comparisons with stagnation point experiments. Journal of Thermal Science, 2002, 11, 53-59.	0.9	1
96	Title is missing!. Journal of Engineering Physics and Thermophysics, 2002, 75, 885-889.	0.2	3
97	Title is missing!. High Temperature, 2002, 40, 684-692.	0.1	4
98	Symmetry of turbulent boundary-layer flows: Investigation of different eddy viscosity models. Acta Mechanica, 2001, 151, 1-14.	1.1	33
99	Title is missing!. High Temperature, 2001, 39, 637-640.	0.1	23
100	Turbulent heat transfer of rotating disk at constant temperature or density of heat flux to the wall. High Temperature, 2000, 38, 499-501.	0.1	19
101	Effect of wall-temperature distribution on heat transfer in centrifugal flow in the gap between parallel rotating disks. Journal of Engineering Physics and Thermophysics, 1999, 72, 896-899.	0.2	5
102	Simulation of heat transfer and hydrodynamics over a free rotating disk using an improved radial velocity profile. Journal of Thermal Science, 1999, 8, 243-249.	0.9	4
103	Integral Method of Calculation of a Turbulent Centrifugal Underswirl Flow in a Gap between Parallel Rotating. Heat Transfer Research, 1999, 30, 238-248.	0.9	3
104	Heat Transfer in Turbulent Centrifugal How between Rotating Discs with Flow Swirling at the Inlet. Heat Transfer Research, 1998, 29, 383-390.	0.9	6
105	Heat transfer and hydrodynamics in channels rotating about their axis. Journal of Engineering Physics and Thermophysics, 1997, 70, 511.	0.2	7
106	Integral Method for Calculating the Characteristics of a Turbulent Boundary Layer on a Rotating Disk: Quadratic Approximation of the Tangent of the Flow Swirl Angle. Heat Transfer Research, 1997, 28, 402-413.	0.9	7