SÅ, awomir PikuÅ, a, Slawomir Pikula, Sl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9402793/publications.pdf

Version: 2024-02-01

86 papers

2,943 citations

201385 27 h-index 51 g-index

86 all docs 86 docs citations

86 times ranked 3552 citing authors

#	Article	IF	CITATIONS
1	Naturally Occurring Human Glutathione S-transferase GSTP1-1 Isoforms with Isoleucine and Valine in Position 104 Differ in Enzymic Properties. FEBS Journal, 1994, 224, 893-899.	0.2	389
2	The roles of annexins and alkaline phosphatase in mineralization process Acta Biochimica Polonica, 2003, 50, 1019-1038.	0.3	168
3	Novel Function of Human RLIP76: ATP-Dependent Transport of Glutathione Conjugates and Doxorubicinâ€. Biochemistry, 2000, 39, 9327-9334.	1.2	163
4	Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 532-546.	1.1	131
5	Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2005, 336, 868-875.	1.0	115
6	Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis and Cartilage, 2009, 17, 64-72.	0.6	108
7	A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology, 2014, 15, 47-64.	2.0	105
8	Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast-like cells. Journal of Proteomics, 2011, 74, 1123-1134.	1.2	97
9	Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblastâ€ike Saosâ€2 cells. Journal of Cellular Biochemistry, 2009, 106, 127-138.	1.2	88
10	Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics, 2008, 8, 192-205.	1.3	85
11	Potential Role of Annexin AnnAt1 from Arabidopsis thaliana in pH-Mediated Cellular Response to Environmental Stimuli. Plant and Cell Physiology, 2007, 48, 792-803.	1.5	72
12	Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations. International Journal of Molecular Sciences, 2013, 14, 5036-5129.	1.8	55
13	Phosphodiesterase Activity of Alkaline Phosphatase in ATP-initiated Ca2+ and Phosphate Deposition in Isolated Chicken Matrix Vesicles. Journal of Biological Chemistry, 2005, 280, 37289-37296.	1.6	54
14	ATP-Dependent Human Erythrocyte Glutathione-Conjugate Transporter. II. Functional Reconstitution of Transport Activityâ€. Biochemistry, 1998, 37, 5239-5248.	1,2	51
15	ATP-Dependent Human Erythrocyte Glutathione-Conjugate Transporter. I. Purification, Photoaffinity Labeling, and Kinetic Characteristics of ATPase Activityâ€. Biochemistry, 1998, 37, 5231-5238.	1.2	47
16	Acidic pH-induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB Journal, 2001, 15, 1083-1085.	0.2	47
17	Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1009-1023.	1.1	47
18	Annexin-A6 presents two modes of association with phospholipid membranes. A combined QCM-D, AFM and cryo-TEM study. Journal of Structural Biology, 2009, 168, 107-116.	1.3	44

#	Article	IF	CITATIONS
19	Conformational states of annexin VI in solution induced by acidic pH. FEBS Letters, 2001, 496, 49-54.	1.3	40
20	TNAP stimulates vascular smooth muscle cell trans-differentiation into chondrocytes through calcium deposition and BMP-2 activation: Possible implication in atherosclerotic plaque stability. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 643-653.	1.8	38
21	Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited . Molecular Membrane Biology, 2012, 29, 229-242.	2.0	36
22	Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling. Archives of Biochemistry and Biophysics, 2009, 487, 66-78.	1.4	33
23	TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovascular Research, 2022, 118, 84-96.	1.8	33
24	Annexins IV (p32) and VI (p68) interact with erythrocyte membrane in a calcium-dependent manner. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1105, 201-206.	1.4	31
25	A comparative analysis of strategies for isolation of matrix vesicles. Analytical Biochemistry, 2007, 361, 176-182.	1.1	31
26	Annexins as nucleotide-binding proteins: Facts and speculations. BioEssays, 2001, 23, 170-178.	1.2	28
27	GTP-Induced Membrane Binding and Ion Channel Activity of Annexin VI: Is Annexin VI a GTP Biosensor?. Biophysical Journal, 2002, 82, 2737-2745.	0.2	28
28	Matrix vesicles isolated from mineralization-competent Saos-2 cells are selectively enriched with annexins and S100 proteins. Biochemical and Biophysical Research Communications, 2011, 412, 683-687.	1.0	28
29	Temperature dependence of ligand–protein complex formation as reflected by saturation transfer difference NMR experiments. Magnetic Resonance in Chemistry, 2007, 45, 745-748.	1.1	27
30	Interaction of annexin A6 with cholesterol rich membranes is pH-dependent and mediated by the sterol OH. Journal of Colloid and Interface Science, 2010, 346, 436-441.	5.0	25
31	Cholesterol as a factor regulating intracellular localization of annexin A6 in Niemann–Pick type C human skin fibroblasts. Archives of Biochemistry and Biophysics, 2010, 493, 221-233.	1.4	25
32	Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization. Archives of Biochemistry and Biophysics, 2019, 667, 14-21.	1.4	25
33	A Putative Consensus Sequence for the Nucleotide-Binding Site of Annexin A6â€. Biochemistry, 2003, 42, 9137-9146.	1.2	24
34	Downregulation of PMCA2 or PMCA3 reorganizes Ca2+ handling systems in differentiating PC12 cells. Cell Calcium, 2012, 52, 433-444.	1.1	24
35	Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cellular and Molecular Life Sciences, 2012, 69, 1773-1785.	2.4	23
36	Isolation and Characteristics of Matrix Vesicles. Methods in Molecular Biology, 2013, 1053, 115-124.	0.4	23

#	Article	IF	CITATIONS
37	Characteristics of minerals in vesicles produced by human osteoblasts hFOB 1.19 and osteosarcoma Saos-2 cells stimulated for mineralization. Journal of Inorganic Biochemistry, 2017, 171, 100-107.	1.5	22
38	Fluorescence Spectroscopic Studies on Interactions between Liver Annexin VI and Nucleotides. A Possible Role for a Tryptophan Residue. FEBS Journal, 1997, 248, 238-244.	0.2	21
39	Structure of Human Annexin A6 at the Air-Water Interface and in a Membrane-Bound State. Biophysical Journal, 2004, 87, 1215-1226.	0.2	21
40	Ankylosing Spondylitis, Late Osteoarthritis, Vascular Calcification, Chondrocalcinosis and Pseudo Gout: Toward a Possible Drug Therapy. Current Medicinal Chemistry, 2011, 18, 2196-2203.	1.2	21
41	Effects of Mutagenesis of W343 in Human Annexin A6 Isoform 1 on Its Interaction with GTP: Nucleotide-Induced Oligomer Formation and Ion Channel Activity. Biochemistry, 2006, 45, 4965-4973.	1.2	20
42	Role of annexin A6 isoforms in catecholamine secretion by PC12 cells: Distinct influence on calcium response. Journal of Cellular Biochemistry, 2010, 111, 168-178.	1.2	20
43	Impaired dynamics of the late endosome/lysosome compartment in human Niemann–Pick type C skin fibroblasts carrying mutation in NPC1 gene. Molecular BioSystems, 2012, 8, 1197.	2.9	20
44	Localization of Annexin A6 in Matrix Vesicles During Physiological Mineralization. International Journal of Molecular Sciences, 2020, 21, 1367.	1.8	20
45	A Glutathione S-transferases Isozyme (bGST 5.8) Involved in the Metabolism of 4-Hydroxy-2-trans-nonenal is Localized in Bovine Lens Epithelium. Experimental Eye Research, 1996, 63, 329-337.	1.2	19
46	ATP-Binding Site of Annexin VI Characterized by Photochemical Release of Nucleotide and Infrared Difference Spectroscopy. Biochemical and Biophysical Research Communications, 1999, 263, 775-779.	1.0	19
47	Calcium―and pHâ€dependent localization of annexin A6 isoforms in Balb/3T3 fibroblasts reflecting their potential participation in vesicular transport. Journal of Cellular Biochemistry, 2008, 104, 418-434.	1.2	19
48	N- and C-Terminal Halves of Human Annexin VI Differ in Ability to Form Low pH-Induced Ion Channels. Biochemical and Biophysical Research Communications, 2001, 284, 785-791.	1.0	18
49	Annexin A6 is recruited into lipid rafts of Niemann–Pick type C disease fibroblasts in a Ca2+-dependent manner. Biochemical and Biophysical Research Communications, 2011, 405, 192-196.	1.0	17
50	Interaction of plasma membrane Ca2+-ATPase isoform 4 with calcineurin A: Implications for catecholamine secretion by PC12 cells. Biochemical and Biophysical Research Communications, 2011, 411, 235-240.	1.0	16
51	Collagen promotes matrix vesicle-mediated mineralization by vascular smooth muscle cells. Journal of Inorganic Biochemistry, 2018, 186, 1-9.	1.5	16
52	Whole-body clearing, staining and screening of calcium deposits in the mdx mouse model of Duchenne muscular dystrophy. Skeletal Muscle, 2018, 8, 21.	1.9	16
53	Mechanisms for xenobiotic transport in biological membranes. Toxicology Letters, 1999, 106, 107-118.	0.4	15
54	Direct Determination of Phosphatase Activity from Physiological Substrates in Cells. PLoS ONE, 2015, 10, e0120087.	1.1	15

#	Article	IF	CITATIONS
55	Structural and functional characterization of annexin 1 from Medicago truncatula. Plant Physiology and Biochemistry, 2013, 73, 56-62.	2.8	14
56	Neutralization of cholera toxin by Rosaceae family plant extracts. BMC Complementary and Alternative Medicine, 2019, 19, 140.	3.7	13
57	Effect of calcium on the interactions between Ca2+-ATPase molecules in sarcoplasmic reticulum. Biochimica Et Biophysica Acta - Biomembranes, 1989, 984, 326-338.	1.4	12
58	Phosphorylation-dependent phospholipase D activity of matrix vesicles. FEBS Letters, 2006, 580, 5676-5680.	1.3	12
59	Annexins A2, A6 and Fetuin-A Affect the Process of Mineralization in Vesicles Derived from Human Osteoblastic hFOB 1.19 and Osteosarcoma Saos-2 Cells. International Journal of Molecular Sciences, 2021, 22, 3993.	1.8	12
60	Tryptophan phosphorescence of the Ca2+-ATPase of sarcoplasmic reticulum. BBA - Proteins and Proteomics, 1988, 957, 230-236.	2.1	11
61	Gene expression pattern in PC12 cells with reduced PMCA2 or PMCA3 isoform: selective up-regulation of calmodulin and neuromodulin. Molecular and Cellular Biochemistry, 2012, 360, 89-102.	1.4	11
62	Calcineurin/NFAT Signaling Represses Genes Vamp1 and Vamp2 via PMCA-Dependent Mechanism during Dopamine Secretion by Pheochromocytoma Cells. PLoS ONE, 2014, 9, e92176.	1.1	11
63	NFAT1 and NFAT3 Cooperate with HDAC4 during Regulation of Alternative Splicing of PMCA Isoforms in PC12 Cells. PLoS ONE, 2014, 9, e99118.	1.1	11
64	Active creatine kinase is present in matrix vesicles isolated from femurs of chicken embryo: Implications for bone mineralization. Biochemical and Biophysical Research Communications, 2010, 391, 1432-1436.	1.0	10
65	Direct determination of phospholipase D activity by infrared spectroscopy. Analytical Biochemistry, 2012, 430, 32-38.	1.1	10
66	Stimulators of Mineralization Limit the Invasive Phenotype of Human Osteosarcoma Cells by a Mechanism Involving Impaired Invadopodia Formation. PLoS ONE, 2014, 9, e109938.	1.1	9
67	Two-Step Membrane Binding of NDPK-B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation. Langmuir, 2016, 32, 12923-12933.	1.6	9
68	Lipid metabolism as a target for potassium channel effectors. Biochemical Pharmacology, 2000, 60, 607-614.	2.0	8
69	Calcium- and proton-dependent relocation of annexin A6 in Jurkat T cells stimulated for interleukin-2 secretion Acta Biochimica Polonica, 2007, 54, 261-271.	0.3	8
70	Interaction of AnxA6 with isolated and artificial lipid microdomains; importance of lipid composition and calcium content. Molecular BioSystems, 2013, 9, 668.	2.9	7
71	Influence of the 524-VAAEIL-529 sequence of annexins A6 in their interfacial behavior and interaction with lipid monolayers. Journal of Colloid and Interface Science, 2013, 403, 99-104.	5.0	7
72	Acidic pHâ€induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB Journal, 2001, 15, 1083-1085.	0.2	7

#	Article	IF	CITATIONS
73	Src and ROCK Kinases Differentially Regulate Mineralization of Human Osteosarcoma Saos-2 Cells. International Journal of Molecular Sciences, 2019, 20, 2872.	1.8	6
74	Recent Advances in NMR Studies of Lipids. Annual Reports on NMR Spectroscopy, 2015, 85, 195-246.	0.7	4
75	Membranes and pathophysiological mineralization. Postepy Biochemii, 2016, 62, 511-517.	0.5	4
76	Analysis of Minerals Produced by hFOB 1.19 and Saos-2 Cells Using Transmission Electron Microscopy with Energy Dispersive X-ray Microanalysis. Journal of Visualized Experiments, 2018, , .	0.2	3
77	Activation of mammalian terget of rapamycin kinase and glycogen synthase kinaseâ€3β accompanies abnormal accumulation of cholesterol in fibroblasts from Niemannâ€Pick type C patients. Journal of Cellular Biochemistry, 2019, 120, 6580-6588.	1.2	3
78	NMR of lipids. Nuclear Magnetic Resonance, 2013, , 362-382.	0.1	3
79	UDP hydrolase activity associated with the porcine liver annexin fraction. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 70-76.	1.1	2
80	Probing nucleotide binding site of annexin A6. Vibrational Spectroscopy, 2004, 36, 233-236.	1.2	2
81	A novel retinoid binding property of human annexin A6. FEBS Letters, 2006, 580, 3065-3069.	1.3	2
82	Characterization of caged compounds binding to proteins by NMR spectroscopy. Biochemical and Biophysical Research Communications, 2010, 400, 447-451.	1.0	2
83	Chapter 9. NMR of lipids. Nuclear Magnetic Resonance, 2014, , 378-400.	0.1	2
84	NMR of lipids. Nuclear Magnetic Resonance, 2015, , 385-406.	0.1	2
85	Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation., 2022, 1 ,.		2
86	Acidic pH-Induced Ion Channels Formed by Annexin A6: Transformation of the Molecule from Soluble to Membrane Integral Protein. Molecular Biology Intelligence Unit, 2003, , 182-195.	0.2	1