Thais A Enoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9402602/publications.pdf

Version: 2024-02-01

1040056 1125743 23 466 9 13 citations h-index g-index papers 25 25 25 616 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Improving our picture of the plasma membrane: Rafts induce ordered domains in a simplified model cytoplasmic leaflet. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183995.	2.6	12
2	Coupling of Leaflet Phase Behavior in Asymmetric Giant Unilamellar Vesicles Prepared by Hemifusion: Investigating the Influence of the Low-Metling Lipid. Biophysical Journal, 2021, 120, 39a.	0.5	O
3	Coupling between Lateral and Transverse Organization in Three-Component Lipid Mixtures Investigated with Asymmetric GUVs Prepared by Hemifusion. Biophysical Journal, 2021, 120, 39a.	0.5	O
4	Dataset of asymmetric giant unilamellar vesicles prepared via hemifusion: Observation of anti-alignment of domains and modulated phases in asymmetric bilayers Data in Brief, 2021, 35, 106927.	1.0	5
5	Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183586.	2.6	14
6	Model Membrane Systems Used to Study Plasma Membrane Lipid Asymmetry. Symmetry, 2021, 13, 1356.	2.2	23
7	Experimental Evidence That Bilayer Asymmetry Decreases Lo/Ld Line Tension. Biophysical Journal, 2020, 118, 386a.	0.5	O
8	Asymmetric Bilayers by Hemifusion: Method and Leaflet Behaviors. Biophysical Journal, 2019, 117, 1037-1050.	0.5	44
9	A New Method to Prepare Asymmetric Unilamellar Vesicles: Hemifusion. Biophysical Journal, 2019, 116, 80a.	0.5	O
10	Physical Principles of Membrane Shape Regulation by the Glycocalyx. Cell, 2019, 177, 1757-1770.e21.	28.9	187
11	Antimicrobial Peptide K ⁰ -W ⁶ -Hya1 Induces Stable Structurally Modified Lipid Domains in Anionic Membranes. Langmuir, 2018, 34, 2014-2025.	3.5	17
12	FRET Detects the Size of Nanodomains for Coexisting Liquid-Disordered and Liquid-Ordered Phases. Biophysical Journal, 2018, 114, 1921-1935.	0.5	37
13	Measuring Partition Coefficient between Liquid-Disordered (LD) and Liquid-Ordered Phases. Why are Phase Diagrams Important to Know?. Biophysical Journal, 2018, 114, 449a.	0.5	O
14	Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide. Biophysical Journal, 2018, 114, 2152-2164.	0.5	22
15	Line Tension Controls Liquid-DisorderedÂ+ Liquid-Ordered Domain Size Transition in Lipid Bilayers. Biophysical Journal, 2017, 112, 1431-1443.	0.5	78
16	Probe Partition between Liquid-Disordered (LD) and Liquid-Ordered (Lo) Phases and Investigation of Nanodomain Sizes. Biophysical Journal, 2017, 112, 375a-376a.	0.5	0
17	F 4,5 GWALP Partitioning, Orientation, and Effect on Bending Moduli in Models of the Plasma Membrane. Biophysical Journal, 2017, 112, 377a.	0.5	O
18	Partition Coefficient of a Transmembrane Peptide, between Lo and Ld Phases: Does the Peptide Distinguish Macro from Nano Domains?. Biophysical Journal, 2016, 110, 84a-85a.	0.5	0

Thais A Enoki

#	Article	IF	CITATION
19	Effect of Electrostatic Repulsion on DMPG Bilayers. Biophysical Journal, 2015, 108, 239a.	0.5	O
20	Partitioning of the Transmembrane Peptide GWALP23 between Lo and Ld Phases in Macro and Nanoscale Domains. Nanometer-Scale Domains can be Treated as a Phase. Biophysical Journal, 2015, 108, 86a.	0.5	0
21	The Interaction Between the Antimicrobial Peptide K-Hya1 and Model Membranes: Distinct Action in Neutral or Negatively Charged Bilayers. Biophysical Journal, 2014, 106, 85a.	0.5	1
22	Light Scattering on the Structural Characterization of DMPG Vesicles along the Bilayer Anomalous Phase Transition. Biophysical Journal, 2013, 104, 81a.	0.5	0
23	Light scattering on the structural characterization of DMPG vesicles along the bilayer anomalous phase transition. Chemistry and Physics of Lipids, 2012, 165, 826-837.	3.2	24