InÃas Figueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9402494/publications.pdf

Version: 2024-02-01

623574 752573 20 708 14 20 citations g-index h-index papers 20 20 20 1485 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Circulating (Poly)phenol Metabolites: Neuroprotection in a 3D Cell Model of Parkinson's Disease. Molecular Nutrition and Food Research, 2022, 66, e2100959.	1.5	8
2	Picturing Breast Cancer Brain Metastasis Development to Unravel Molecular Players and Cellular Crosstalk. Cancers, 2021, 13, 910.	1.7	14
3	MicroRNAs and Extracellular Vesicles as Distinctive Biomarkers of Precocious and Advanced Stages of Breast Cancer Brain Metastases Development. International Journal of Molecular Sciences, 2021, 22, 5214.	1.8	13
4	Behind Brain Metastases Formation: Cellular and Molecular Alterations and Blood–Brain Barrier Disruption. International Journal of Molecular Sciences, 2021, 22, 7057.	1.8	16
5	Small Molecule Fisetin Modulates Alpha–Synuclein Aggregation. Molecules, 2021, 26, 3353.	1.7	12
6	Low-Molecular Weight Metabolites from Polyphenols as Effectors for Attenuating Neuroinflammation. Journal of Agricultural and Food Chemistry, 2020, 68, 1790-1807.	2.4	60
7	5-(Hydroxyphenyl)- \hat{I}^3 -Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence from Different in Silico, In Vitro and In Vivo Experimental Models. Nutrients, 2019, 11, 2678.	1.7	55
8	Blood–brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study. European Journal of Nutrition, 2019, 58, 113-130.	1.8	37
9	(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Scientific Reports, 2018, 8, 6965.	1.6	20
10	Exploring the Benefits of Cellular Models to Uncover Bioactive Polyphenols for Neurodegeneration. Current Pharmaceutical Design, 2018, 24, 2076-2106.	0.9	7
11	(Poly)phenol metabolites from Arbutus unedo leaves protect yeast from oxidative injury by activation of antioxidant and protein clearance pathways. Journal of Functional Foods, 2017, 32, 333-346.	1.6	17
12	Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chemistry, 2017, 215, 274-283.	4.2	52
13	Polyphenols Beyond Barriers: A Glimpse into the Brain. Current Neuropharmacology, 2017, 15, 562-594.	1.4	87
14	Protective Effect of a (Poly)phenol-Rich Extract Derived from Sweet Cherries Culls against Oxidative Cell Damage. Molecules, 2016, 21, 406.	1.7	35
15	Interventions for age-related diseases: Shifting the paradigm. Mechanisms of Ageing and Development, 2016, 160, 69-92.	2.2	57
16	Chemical characterization and bioactivity of phytochemicals from Iberian endemic Santolina semidentata and strategies for ex situ propagation. Industrial Crops and Products, 2015, 74, 505-513.	2.5	18
17	Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1977-1986.	1.1	24
18	Neuroprotective effects of digested polyphenols from wild blackberry species. European Journal of Nutrition, 2013, 52, 225-236.	1.8	68

InÃ≙s Figueira

#	Article	IF	CITATION
19	Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation. Antioxidants, 2013, 2, 273-292.	2.2	7
20	Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chemistry, 2012, 131, 1443-1452.	4.2	101