List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9401942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZnCl ₂ -mediated stereo- and chemoselective synthesis of vinylphosphonates. Organic and Biomolecular Chemistry, 2022, 20, 2500-2507.	2.8	3
2	Chemistry of Carbanions Stabilised by (Trifluoromethyl) sulfonyl Group: Synthesis, Structure and Applications. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 186-197.	0.1	1
3	Synthesis of Spirocyclic Cyclobutenes through Desulfinative Spirocyclisation of <i>gem</i> â€Bis(triflyl)cyclobutenes. Chemistry - A European Journal, 2022, 28, .	3.3	3
4	A Fluorinated Carbanionic Substituent for Improving Water Solubility and Lipophilicity of Fluorescent Dyes. Angewandte Chemie, 2021, 133, 5228-5232.	2.0	7
5	A Fluorinated Carbanionic Substituent for Improving Water Solubility and Lipophilicity of Fluorescent Dyes. Angewandte Chemie - International Edition, 2021, 60, 5168-5172.	13.8	26
6	Green and catalytic methods for \hat{I}^3 -lactone synthesis. , 2021, , 537-615.		2
7	p <i>K</i> _a Determination of Strongly Acidic C-H Acids Bearing a (Perfluoroalkyl)sulfonyl Group in Acetonitrile by Means of Voltammetric Reduction of Quinone. Electrochemistry, 2021, 89, 121-124.	1.4	5
8	Metal-Free C–C/C–N/C–C Bond Formation Cascade for the Synthesis of (Trifluoromethyl)sulfonylated Cyclopenta[<i>b</i>]indolines. Organic Letters, 2021, 23, 2921-2926.	4.6	3
9	Regioselective Synthesis of 4â€Arylâ€1,3â€dihydroxyâ€2â€naphthoates through 1,2â€Arylâ€Migrative Ring Rearrangement Reaction and their Photoluminescence Properties. Chemistry - A European Journal, 2021, 27, 11442-11449.	3.3	5
10	Diaminomethylenemalononitrile as a Chiral Single Hydrogen Bond Catalyst: Application to Enantioselective Conjugate Addition of αâ€Branched Aldehydes. Chemistry - an Asian Journal, 2021, 16, 2272-2275.	3.3	8
11	Synthesis of Polycyclic Aromatic Hydrocarbons Decorated by Fluorinated Carbon Acids/Carbanions. Chemistry - A European Journal, 2021, 27, 16112-16116.	3.3	8
12	A catalyst-free bis(triflyl)ethylation/benzannulation reaction: rapid access to carbazole-based superacidic carbon acids from alkynols. Chemical Communications, 2020, 56, 1795-1798.	4.1	9
13	An Efficient Two-Step Protocol for the Isoprenylation of Xanthone at the C2 Position Starting from 1-Fluoroxanthone Derivative. Synlett, 2020, 31, 1423-1429.	1.8	2
14	Anion-Accelerated Aromatic Oxy-Cope Rearrangement in Geranylation/Nerylation of Xanthone: Stereochemical Insights and Synthesis of Fuscaxanthone F. Synlett, 2020, 31, 1378-1383.	1.8	5
15	Trifluorosulfonylation Cascade in Allenols: Stereocontrolled Synthesis of Bis(triflyl)enones. Chemistry - A European Journal, 2020, 26, 8983-8989.	3.3	10
16	SNAr Reaction/Claisen Rearrangement Approach to 2,4-Diisoprenylxanthones: Total Synthesis of Garcinone A. Synlett, 2020, 31, 1511-1516.	1.8	3
17	Epimerization-suppressed organocatalytic synthesis of poly-l-lactide in supercritical carbon dioxide under plasticizing conditions. Tetrahedron Letters, 2019, 60, 150987.	1.4	3
18	Chemical Bonding in Polarised Push–Pull Ethylenes. Angewandte Chemie - International Edition, 2019, 58, 8839-8844.	13.8	18

#	Article	IF	CITATIONS
19	Chemical Bonding in Polarised Push–Pull Ethylenes. Angewandte Chemie, 2019, 131, 8931-8936.	2.0	7
20	Transition metal-free controlled synthesis of bis[(trifluoromethyl)sulfonyl]ethyl-decorated heterocycles. Organic Chemistry Frontiers, 2018, 5, 3163-3169.	4.5	8
21	Synthesis and Characterization of Stable Phosphorus Carbabetaines. Chemistry - an Asian Journal, 2018, 13, 1956-1961.	3.3	13
22	2â€(Pyridiniumâ€1â€yl)â€1,1â€bis(perfluoroalkylsulfonyl)ethanâ€1â€ide: A Practical Reagent for Synthesis of St Acidic 1,1â€Bis(perfluoroalkylsulfonyl)alkanes. Chemistry - A European Journal, 2017, 23, 8203-8211.	rongly	26
23	Design of Novel Hydrogen-Bonding Donor Organocatalysts and Their Application to Asymmetric Direct Aldol Reaction. Synlett, 2017, 28, 1363-1367.	1.8	11
24	Synthesis of 1,2,3,4-tetrasubstituted naphthalenes through a cascade reaction triggered by silyl acetal activation. Chemical Communications, 2016, 52, 7974-7977.	4.1	11
25	A New Approach to Axially Chiral Biaryls via the Atrop-Diastereoselective Formation of Medium-Sized Lactone Bridge. Synlett, 2016, 27, 1949-1956.	1.8	0
26	Concise Total Synthesis of Elliptoxanthone A by Utilizing Aromatic Oxy-Cope Rearrangement for Efficient C-Isoprenylation of Xanthone Skeleton. Synlett, 2016, 27, 2229-2232.	1.8	6
27	An Efficient Isoprenylation of Xanthones at the C1 Position by Utilizing Anion-Accelerated Aromatic Oxy-Cope Rearrangement. Synlett, 2016, 27, 848-853.	1.8	11
28	Sequential Mukaiyama–Michael reaction induced by carbon acids. Chemical Communications, 2016, 52, 3280-3283.	4.1	17
29	Chemistry of Fluorinated Carbon Acids: Synthesis, Physicochemical Properties, and Catalysis. Chemical and Pharmaceutical Bulletin, 2015, 63, 649-662.	1.3	8
30	A Rapid Entry to Diverse γ‥lidenetetronate Derivatives through Regioselective ÂBromination of Tetronic Acid Derived Î³â€Łactones and Metalâ€Catalyzed Postfunctionalization. European Journal of Organic Chemistry, 2015, 2015, 6259-6269.	2.4	13
31	Chemoselective Two-Directional Reaction of Bifunctionalized Substrates: Formal Ketal-Selective Mukaiyama Aldol Type Reaction. Synlett, 2015, 26, 2457-2461.	1.8	7
32	Green and Catalytic Methods for \hat{I}^3 -Lactone Synthesis. , 2015, , 257-289.		13
33	Synthesis of (Z)-fluoroallyl azides through aluminium-mediated defluorinative functionalization reactions. Tetrahedron Letters, 2015, 56, 925-929.	1.4	7
34	Synthesis of superacidic carbon acid and its derivatives. Journal of Fluorine Chemistry, 2015, 174, 108-119.	1.7	25
35	Gasâ€phase acidity of 1,1â€bis(trifluoromethanesulfonyl)propane derivatives and related compounds: experimental and theoretical studies. Journal of Physical Organic Chemistry, 2015, 28, 181-186. -	1.9	5
36	1,1â€Bis(triflyl)alkadienes: Easyâ€Toâ€Handle Building Blocks for Strongly Acidic Carbon Acids. Asian Journal of Organic Chemistry, 2014, 3, 556-563.	2.7	11

#	Article	IF	CITATIONS
37	Synthesis and Catalysis of Strong Carbon Acids Containing Bis(triflyl)methyl Group. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 158-170.	0.1	6
38	Organic Acid Catalysts in Reactions of Lactones with Silicon Enolates. Asian Journal of Organic Chemistry, 2013, 2, 989-996.	2.7	16
39	2-(Pyridinium-1-yl)-1,1-bis(triflyl)ethanides: structural behaviour and availability as bis(triflyl)ethylating reagents. Chemical Communications, 2013, 49, 10091.	4.1	34
40	Synthesis, Characterization, and Applications of Zwitterions Containing a Carbanion Moiety. Angewandte Chemie - International Edition, 2013, 52, 1560-1563.	13.8	39
41	Reductive alkylation of bis(triflyl)methane through self-promoting formation of easily isolable 1,1-bis(triflyl)alkenes. Tetrahedron Letters, 2013, 54, 2160-2163.	1.4	22
42	Novel One-Pot Synthesis of Xanthones via Sequential Fluoride Ion-Promoted Fries-Type Rearrangement and Nucleophilic Aromatic Substitution. Synlett, 2013, 24, 2575-2580.	1.8	5
43	Synthesis of δ-Oxo-1,1-bis(triflyl)alkanes and Their Acidities. Molecules, 2013, 18, 15531-15540.	3.8	7
44	Organic acid induced olefination reaction of lactones. Chemical Communications, 2012, 48, 8967.	4.1	25
45	Four component reaction of aldehydes, isocyanides, Me3SiN3, and aliphatic alcohols catalyzed by indium triflate. Tetrahedron Letters, 2012, 53, 3161-3164.	1.4	20
46	Preparation of (Z)-1-fluoro-1-alkenyl carboxylates, carbonates and carbamates through chromium mediated transformation of dibromofluoromethylcarbinyl esters and the reactivity as double acyl group donors. Journal of Fluorine Chemistry, 2012, 133, 38-51.	1.7	6
47	A regioselective synthesis of poly-substituted aryl triflones through self-promoting three component reaction. Chemical Communications, 2011, 47, 7245.	4.1	45
48	Copper mediated defluorinative allylic alkylation of difluorohomoallyl alcohol derivatives directed to an efficient synthetic method for (Z)-fluoroalkene dipeptide isosteres. Journal of Fluorine Chemistry, 2011, 132, 327-338.	1.7	39
49	Synthetic Methods for Fluorinated Olefins. European Journal of Organic Chemistry, 2011, 2011, 5939-5954.	2.4	156
50	An Effective Method to Introduce Carbon Acid Functionality: 2,2â€Bis(trifluoromethanesulfonyl)ethylation Reaction of Arenes. Chemistry - A European Journal, 2011, 17, 11747-11751.	3.3	49
51	Copper-free defluorinative alkylation of allylic difluorides through Lewis acid-mediated C–F bond activation. Tetrahedron Letters, 2011, 52, 2997-3000.	1.4	34
52	Trihaloacetaldehyde N,O-acetals: useful building blocks for dihalomethylene compounds. Tetrahedron, 2010, 66, 4530-4541.	1.9	8
53	A rapid and convergent synthesis of α,α-difluoro-β-hydroxyketones through regiospecific defluorinative alkylation reaction. Tetrahedron Letters, 2010, 51, 2625-2628.	1.4	4
54	Carbon Acid Induced Mukaiyama Aldol Type Reaction of Sterically Hindered Ketones. Journal of Organic Chemistry, 2010, 75, 5375-5378.	3.2	35

#	Article	IF	CITATIONS
55	Highly Effective Vinylogous Mukaiyamaâ`'Michael Reaction Catalyzed by Silyl Methide Species Generated from 1,1,3,3-Tetrakis(trifluoromethanesulfonyl)propane. Journal of Organic Chemistry, 2010, 75, 1259-1265.	3.2	55
56	1,4-Addition of silicon dienoates to α,β-unsaturated aldehydes catalyzed by in situ-generated silicon Lewis acid. Chemical Communications, 2010, 46, 8728.	4.1	41
57	Direct Alkylative Passerini Reaction of Aldehydes, Isocyanides, and Free Aliphatic Alcohols Catalyzed by Indium(III) Triflate. Journal of Organic Chemistry, 2009, 74, 3927-3929.	3.2	40
58	Novel defluorinative alkylation of trifluoroacetaldehyde N,O-acetal derivatives and its application to multi-component reaction. Chemical Communications, 2009, , 1034-1036.	4.1	10
59	Remarkable rate acceleration of intramolecular Diels–Alder reaction in ionic liquids. Organic and Biomolecular Chemistry, 2009, 7, 3657.	2.8	26
60	An efficient synthesis of triazolo-carbohydrate mimetics and their conformational analysis. Organic and Biomolecular Chemistry, 2008, 6, 2679.	2.8	19
61	Tetrakis(trifluoromethanesulfonyl)propane: highly effective BrÃ,nsted acid catalyst for vinylogous Mukaiyama–Michael reaction of α,β-enones with silyloxyfurans. Chemical Communications, 2008, , 2385.	4.1	55
62	Convenient synthesis of fluorinated quinoline, 1,2-dihydroquinoline, and 1,2,3,4-tetrahydroquinoline derivatives. Tetrahedron, 2007, 63, 2153-2160.	1.9	35
63	Dimethylaluminum methide complex Tf2CHAlMe2: an effective catalyst for Diels–Alder reaction of α,β-unsaturated lactone derivatives with cyclopentadiene. Tetrahedron, 2007, 63, 12149-12159.	1.9	20
64	Development of effective Lewis acids for the catalytic Diels–Alder reaction of α,β-unsaturated lactones with cyclopentadiene. Tetrahedron Letters, 2007, 48, 2993-2997.	1.4	21
65	Development of efficient Lewis acid catalysts for intramolecular cycloaddition reactions of ester-tethered substrates. Chemical Record, 2007, 7, 167-179.	5.8	12
66	Intramolecular [3+2] cycloaddition reaction of α,β-enoate derivatives having allylsilane parts: 1,1′-biphenyl-2,2′-di(triflyl)amide (BIPAM)+2Me2AlCl as a novel Lewis acid. Tetrahedron Letters, 2006, 47, 4181-4185.	1.4	12
67	Intramolecular Diels–Alder reaction of α-fluoroacrylate derivatives promoted by novel bidentate aluminum Lewis acid. Journal of Fluorine Chemistry, 2005, 126, 709-714.	1.7	13
68	Indium(III) triflate catalyzed tandem azidation/1,3-dipolar cycloaddition reaction of ω,ω-dialkoxyalkyne derivatives with trimethylsilyl azide. Tetrahedron Letters, 2005, 46, 8639-8643.	1.4	49
69	Intramolecular Diels–Alder reaction of 1,7,9-decatrienoates catalyzed by indium(III) trifluoromethanesulfonate in aqueous media. Tetrahedron, 2005, 61, 7087-7093.	1.9	36
70	Efficient Intramolecular Diels?Alder Reactions of Ester-Tethered 1,7,9-Decatrienoates Catalyzed by Bis-Aluminated Trifluoromethanesulfonamide ChemInform, 2005, 36, no.	0.0	0
71	Bis-Aluminated Triflic Amide Promoted Diels?Alder Reactions of ?,?-Unsaturated Lactones ChemInform, 2005, 36, no.	0.0	0
72	Intramolecular Diels—Alder Reaction of α-Fluoroacrylate Derivatives Promoted by Novel Bidentate Aluminum Lewis Acid ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
73	Intramolecular Diels—Alder Reaction of 1,7,9-Decatrienoates Catalyzed by Indium(III) Trifluoromethanesulfonate in Aqueous Media ChemInform, 2005, 36, no.	0.0	0
74	Bis-aluminated triflic amide promoted Diels–Alder reactions of α,β-unsaturated lactones. Tetrahedron Letters, 2004, 45, 9439-9442.	1.4	23
75	Efficient intramolecular Diels–Alder reactions of ester-tethered 1,7,9-decatrienoates catalyzed by bis-aluminated trifluoromethanesulfonamide. Tetrahedron, 2004, 60, 12239-12247.	1.9	25