List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9401424/publications.pdf Version: 2024-02-01

VUE-SHENCL

#	Article	IF	CITATIONS
1	Polynorbornene-based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. Journal of Membrane Science, 2022, 641, 119938.	8.2	21
2	Janus Photonic Microspheres with Bridged Lamellar Structures via Dropletâ€Confined Block Copolymer Coâ€Assembly. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
3	Cyclic olefin copolymers containing both linear polyethylene and poly(ethylene- <i>co</i> -norbornene) segments prepared from chain shuttling copolymerization of ethylene and norbornene. Polymer Chemistry, 2022, 13, 245-257.	3.9	15
4	Reactivity of Phosphinoâ€naphtholate Nickel Complexes and Their Catalysis of Copolymerization with Polar Monomers. ChemCatChem, 2022, 14, .	3.7	4
5	One-Step Synthesis of Sequence-Controlled Polyester- <i>block</i> -Poly(ester- <i>alt</i> -thioester) by Chemoselective Multicomponent Polymerization. Macromolecules, 2022, 55, 1153-1164.	4.8	29
6	Crystallization and Phase Transition of <scp>1â€Butene</scp> Copolymers with Distinct Cyclic <scp>Coâ€Units</scp> . Chinese Journal of Chemistry, 2022, 40, 1429-1436.	4.9	11
7	Ru(II) Catalyst Enables Dynamic Dualâ€Crossâ€Linked Elastomers with Nearâ€Infrared Selfâ€Healing toward Flexible Electronics. Advanced Functional Materials, 2022, 32, .	14.9	16
8	Janus Photonic Microspheres with Bridged Lamellar Structures via Dropletâ€Confined Block Copolymer Coâ€Assembly. Angewandte Chemie, 2022, 134, .	2.0	2
9	Switchable Copolymerization of Maleic Anhydride/Epoxides/Lactide Mixtures: A Straightforward Approach to Block Copolymers with Unsaturated Polyester Sequences. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	4
10	Synthesis of Unsaturated (Co)polyesters from Ring-Opening Copolymerization by Aluminum Bipyridine Bisphenolate Complexes with Improved Protonic Impurities Tolerance. Macromolecules, 2022, 55, 3502-3512.	4.8	14
11	Interfacial Selfâ€Assembly of Amphiphilic Coreâ€Shell Bottlebrush Block Copolymers Toward Responsive Photonic Balls Bearing Ionic Channels. Macromolecular Rapid Communications, 2022, 43, e2200188.	3.9	6
12	Synthesis of Bimodal Distributed Cyclic Olefin Copolymers with Improved Tensile Properties. Chinese Journal of Chemistry, 2022, 40, 1931-1938.	4.9	5
13	A green synthetic toolbox from organocatalytic alternating copolymerization of renewable epoxides and dihydrocoumarin. Journal of Polymer Science, 2022, 60, 3404-3413.	3.8	2
14	Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Ecoâ€Friendly Photonic Pigments via Interfacial Selfâ€Assembly. Angewandte Chemie, 2022, 134, .	2.0	2
15	Preparation of Well-Controlled Isotactic Polypropylene-Based Block Copolymers with Superior Physical Performance via Efficient Coordinative Chain Transfer Polymerization. Macromolecules, 2022, 55, 5038-5048.	4.8	5
16	Fully Bio-Based and Supertough PLA Blends via a Novel Interlocking Strategy Combining Strong Dipolar Interactions and Stereocomplexation. Macromolecules, 2022, 55, 5864-5878.	4.8	18
17	Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Ecoâ€Friendly Photonic Pigments via Interfacial Selfâ€Assembly. Angewandte Chemie - International Edition, 2022, 61,	13.8	13
18	Oxidation Control of Bottlebrush Molecular Conformation for Producing Libraries of Photonic Structures. Angewandte Chemie - International Edition, 2021, 60, 3647-3653.	13.8	44

#	Article	IF	CITATIONS
19	Self-Assembled Photonic Microsensors with Strong Aggregation-Induced Emission for Ultra-Trace Quantitative Detection. ACS Nano, 2021, 15, 5534-5544.	14.6	31
20	Robust and Reactive Neutral Nickel Catalysts for Ethylene Polymerization and Copolymerization with a Challenging 1,1-Disubstituted Difunctional Polar Monomer. ACS Catalysis, 2021, 11, 2902-2911.	11.2	39
21	Twoâ€Dimensional Materialâ€Enhanced Flexible and Selfâ€Healable Photodetector for Largeâ€Area Photodetection. Advanced Functional Materials, 2021, 31, 2100136.	14.9	17
22	Discovery and Insights into Organized Spontaneous Emulsification via Interfacial Self-Assembly of Amphiphilic Bottlebrush Block Copolymers. Macromolecules, 2021, 54, 3668-3677.	4.8	36
23	Effect of Ions on the Flow-Induced Crystallization of Poly(vinylidene fluoride). Macromolecules, 2021, 54, 3800-3809.	4.8	8
24	Rapid Responsive Mechanochromic Photonic Pigments with Alternating Glassy-Rubbery Concentric Lamellar Nanostructures. ACS Nano, 2021, 15, 8770-8779.	14.6	34
25	Supersoft Elastic Bottlebrush Microspheres with Stimuli-Responsive Color-Changing Properties in Brine. Langmuir, 2021, 37, 6744-6753.	3.5	15
26	Sustainable and highâ€performance ternary blends from polylactide, <scp>CO₂</scp> â€based polyester and microbial polyesters with different chemical structure. Journal of Polymer Science, 2021, 59, 1578-1595.	3.8	7
27	Post-chemical grafting poly(methyl methacrylate) to commercially renewable elastomer as effective modifiers for polylactide blends. International Journal of Biological Macromolecules, 2021, 181, 718-733.	7.5	8
28	Novel Designed <scp>PEGâ€Dicationic Imidazoliumâ€Based</scp> Ionic Liquids as Effective Plasticizers for Sustainable Polylactide. Chinese Journal of Chemistry, 2021, 39, 2234-2240.	4.9	7
29	Constructing ABA- and ABCBA-Type Multiblock Copolyesters with Structural Diversity by Organocatalytic Self-Switchable Copolymerization. Macromolecules, 2021, 54, 6171-6181.	4.8	30
30	Combining novel polyether-based ionomers and polyethylene glycol as effective toughening agents for polylactide. Polymer, 2021, 229, 123964.	3.8	7
31	Tris(2,4-difluorophenyl)borane/Triisobutylphosphine Lewis Pair: A Thermostable and Air/Moisture-Tolerant Organic Catalyst for the Living Polymerization of Acrylates. Macromolecules, 2021, 54, 8495-8502.	4.8	20
32	Alkali Metal Carboxylates: Simple and Versatile Initiators for Ring-Opening Alternating Copolymerization of Cyclic Anhydrides/Epoxides. Macromolecules, 2021, 54, 713-724.	4.8	41
33	Functionalized Elastomeric Ionomers Used as Effective Toughening Agents for Poly(lactic acid): Enhancement in Interfacial Adhesion and Mechanical Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 573-585.	6.7	24
34	Flow-Induced Crystallization in Butene-1/1,5-Hexadiene Copolymers: Mutual Effects of Molecular Factor and Flow Stimuli. Macromolecules, 2020, 53, 8476-8486.	4.8	8
35	Effects of strain rate and temperature on polymorphism in flow-induced crystallization of Poly(vinylidene fluoride). Polymer, 2020, 203, 122773.	3.8	10
36	Supertough and Transparent Poly(lactic acid) Nanostructure Blends with Minimal Stiffness Loss. ACS Omega, 2020, 5, 13148-13157.	3.5	18

#	Article	IF	CITATIONS
37	Stereoblock Polypropylenes Prepared by Efficient Chain Shuttling Polymerization of Propylene with Binary Zirconium Catalysts and iBu3Al. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1192-1201.	3.8	13
38	Interplay between Macroscopic Stretching and Microscopic Phase Transition Revealed in Butene-1/1,5-Hexadiene Random Copolymers. Macromolecules, 2020, 53, 2145-2156.	4.8	11
39	Influence of Steric Norbornene Co-units on the Crystallization and Memory Effect of Polybutene-1 Copolymers. Macromolecules, 2020, 53, 2088-2100.	4.8	26
40	Facile Synthesis of High-Molecular-Weight Vinyl Sulfone (Sulfoxide) Modified Polyethylenes via Coordination–Insertion Copolymerization. Macromolecules, 2020, 53, 5177-5187.	4.8	18
41	Refractive Index Engineering as a Novel Strategy toward Highly Transparent and Tough Sustainable Polymer Blends. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1335-1344.	3.8	11
42	Effect of Olefin-based Compatibilizers on the Formation of Cocontinuous Structure in Immiscible HDPE/iPP Blends. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1248-1257.	3.8	11
43	Supertough Poly(lactic acid) and Sustainable Elastomer Blends Compatibilized by PLLA- <i>b</i> -PMMA Block Copolymers as Effective A- <i>b</i> -C-Type Compatibilizers. Industrial & Engineering Chemistry Research, 2020, 59, 13956-13968.	3.7	18
44	Flow-Induced Crystallization of Crosslinked Poly(vinylidene fluoride) at Elevated Temperatures: Formation and Evolution of the Electroactive β-Phase. Industrial & Engineering Chemistry Research, 2020, 59, 4459-4471.	3.7	17
45	Copolymerization of Propylene with Higher α-Olefins by a Pyridylamidohafnium Catalyst: An Effective Approach to Polypropylene-Based Elastomer. Polymers, 2020, 12, 89.	4.5	14
46	Highly elastic, strong, and reprocessable cross-linked polyolefin elastomers enabled by boronic ester bonds. Polymer Chemistry, 2020, 11, 3285-3295.	3.9	56
47	Molecular-Level Tuning toward Aggregation Dynamics of Self-Healing Materials. Macromolecules, 2019, 52, 5289-5297.	4.8	25
48	Homoleptic, bisâ€ligated magnesium complexes for ringâ€opening polymerization of lactide and lactones: Synthesis, structure, polymerization behavior and mechanism studies. Applied Organometallic Chemistry, 2019, 33, e4770.	3.5	6
49	Toughening Biosourced Poly(lactic acid) and Poly(3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate) Blends by a Renewable Poly(epichlorohydrin- <i>co</i> -ethylene oxide) Elastomer. ACS Omega, 2019, 4, 19777-19786.	3.5	14
50	Phase Transition from Tetragonal Form II to Hexagonal Form I of Butene-1/4-Methyl-1-pentene Random Copolymers: Molecular Factor versus Stretching Stimuli. Macromolecules, 2019, 52, 1188-1199.	4.8	49
51	Syntheses and properties of ABA, CBA, and CBC triblock copolymers based thermoplastic elastomers with glassy (A), elastomeric (B), and crystalline (C) blocks. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 225-233.	2.2	11
52	Efficient Addition Polymerization of Norbornene with Polar Norbornene Derivatives by Neutral Nickel(II) Catalysts. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1215-1223.	3.8	6
53	Unusual II–I Phase Transition Behavior of Polybutene-1 Ionomers in the Presence of Long-Chain Branch and Ionic Functional Groups. Macromolecules, 2019, 52, 4634-4645.	4.8	28
54	Thermal Analysis of Crystallization and Phase Transition in Novel Polyethylene Glycol Grafted Butene-1 Copolymers. Polymers, 2019, 11, 837.	4.5	9

#	Article	IF	CITATIONS
55	Alcohols responsive photonic crystals prepared by self-assembly of dendronized block copolymers. Reactive and Functional Polymers, 2019, 139, 162-169.	4.1	12
56	Microstructure determination of ethylene-styrene-1-hexene terpolymers with fast 2D NMR by nonuniform sampling. Polymer, 2019, 169, 185-194.	3.8	3
57	Handwritable one-dimensional photonic crystals prepared from dendronized brush block copolymers. Polymer Chemistry, 2019, 10, 1519-1525.	3.9	25
58	Facile functionalization of isotactic polypropylene <i>via</i> click chemistry. Polymer Chemistry, 2019, 10, 6368-6378.	3.9	10
59	Functional Isotactic Polypropylenes via Efficient Direct Copolymerizations of Propylene with Various Amino-Functionalized α-Olefins. Macromolecules, 2019, 52, 9280-9290.	4.8	39
60	Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers. Green Chemistry, 2019, 21, 6123-6132.	9.0	67
61	Stretchingâ€induced phase transition of the buteneâ€1/ethylene random copolymer: Orientation and kinetics. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 116-126.	2.1	31
62	Stretching behavior of the buteneâ€1/ethylene random copolymer: A direct correspondence between triggering of Ilâ€1 phase transition and mechanical yielding. Polymer Crystallization, 2019, 2, e10052.	0.8	10
63	Self-healable gradient copolymers. Materials Chemistry Frontiers, 2019, 3, 464-471.	5.9	30
64	Ring-Opening Polymerization with Lewis Pairs and Subsequent Nucleophilic Substitution: A Promising Strategy to Well-Defined Polyethylene-like Polyesters without Transesterification. Macromolecules, 2018, 51, 836-845.	4.8	56
65	Synthesis of lactide/ <i>É></i> aprolactone quasiâ€random copolymer by using rationally designed mononuclear aluminum complexes with modified βâ€ketiminato ligand. Journal of Polymer Science Part A, 2018, 56, 203-212.	2.3	20
66	Phosphine (oxide)â€{thio) phenolate palladium complexes: Synthesis, characterization and (co)polymerization of norbornene. Applied Organometallic Chemistry, 2018, 32, e4013.	3.5	9
67	Synthesis of high performance cyclic olefin polymers using highly efficient WCl6-based catalyst system. Chinese Journal of Polymer Science (English Edition), 2018, 36, 214-221.	3.8	8
68	The microstructure determination of ethyleneâ€styreneâ€propylene terpolymers at triad level by highâ€ŧemperature twoâ€dimensional NMR spectra. Journal of Polymer Science Part A, 2018, 56, 340-350.	2.3	1
69	Oneâ€Step Access to Sequenceâ€Controlled Block Copolymers by Selfâ€Switchable Organocatalytic Multicomponent Polymerization. Angewandte Chemie - International Edition, 2018, 57, 16888-16892.	13.8	110
70	Oneâ€Step Access to Sequenceâ€Controlled Block Copolymers by Selfâ€Switchable Organocatalytic Multicomponent Polymerization. Angewandte Chemie, 2018, 130, 17130-17134.	2.0	28
71	Spontaneous Form II to I Transition in Low Molar Mass Polybutene-1 at Crystallization Temperature Reveals Stabilization Role of Intercrystalline Links and Entanglements for Metastable Form II Crystals. Macromolecules, 2018, 51, 8298-8305.	4.8	62
72	From Zn(C 6 F 5) 2 to ZnEt 2 â€based Lewis Pairs: Significantly Improved Catalytic Activity and Monomer Adaptability for the Ringâ€opening Polymerization of Lactones. ChemCatChem, 2018, 10, 5287-5296.	3.7	14

#	Article	IF	CITATIONS
73	Robust Bulky [P,O] Neutral Nickel Catalysts for Copolymerization of Ethylene with Polar Vinyl Monomers. ACS Catalysis, 2018, 8, 5963-5976.	11.2	148
74	Metal-free, regioselective and stereoregular alternating copolymerization of monosubstituted epoxides and tricyclic anhydrides. Green Chemistry, 2018, 20, 3963-3973.	9.0	79
75	Effect of Linear and Ring-like Co-units on the Temperature Dependence of Nucleation and Growth in II-I Phase Transition of Butene-1 Copolymers. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1269-1276.	3.8	23
76	Toughening Poly(lactic acid) with Imidazolium-based Elastomeric Ionomers. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1342-1352.	3.8	22
77	Lewis pairs for ring-opening alternating copolymerization of cyclic anhydrides and epoxides. Green Chemistry, 2018, 20, 641-648.	9.0	102
78	Ring-opening metathesis polymerization of cis-5-norbornene-endo-2,3-dicarboxylic anhydride derivatives using the grubbs third generation catalyst. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0	rg & ₹/Ove	rlaude 10 Tf 5
79	9,9-Dimethylxanthene-based binuclear phenoxy-imine neutral nickel(II) catalysts for ethylene homo- and copolymerization. Journal of Organometallic Chemistry, 2017, 836-837, 34-43.	1.8	13
80	Novel imidazolium-based poly(ionic liquid)s with different counterions for self-healing. Journal of Materials Chemistry A, 2017, 5, 25220-25229.	10.3	83
81	Introduction of constrained cyclic skeleton into β-enaminoketonato vanadium complexes: A strategy for stabilization of active centre of vanadium catalyst for ethylene polymerization. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1110-1121.	3.8	7
82	Quasiâ€living copolymerization of ethylene with 1â€hexene by heteroligated (salicylaldiminato) Tj ETQq0 0 0 rgE	3T Overloo 2.3	ck 10 Tf 50 3
83	Facile, Efficient Copolymerization of Ethylene with Norbornene-Containing Dienes Promoted by Single Site Non-Metallocene Oxovanadium(V) Catalytic System. Polymers, 2017, 9, 353.	4.5	7
84	Novel zirconium complexes with constrained cyclic β-enaminoketonato ligands: improved catalytic capability toward ethylene polymerization. Dalton Transactions, 2016, 45, 10308-10318.	3.3	15
85	Bimetallic aluminum complexes with cyclic β-ketiminato ligands: the cooperative effect improves their capability in polymerization of lactide and Îμ-caprolactone. Polymer Chemistry, 2016, 7, 5819-5827.	3.9	38
86	Featured Crystallization Polymorphism and Memory Effect in Novel Butene-1/1,5-Hexadiene Copolymers Synthesized by Post-Metallocene Hafnium Catalyst. Macromolecules, 2016, 49, 6578-6589.	4.8	43
87	Insights into the mechanism for ring-opening polymerization of lactide catalyzed by Zn(C ₆ F ₅) ₂ /organic superbase Lewis pairs. Catalysis Science and Technology, 2016, 6, 7763-7772.	4.1	52
88	Synthesis of Novel Cyclic Olefin Polymer with High Glass Transition Temperature via Ringâ€Opening Metathesis Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 2708-2716.	2.2	28
89	Efficient copolymerization of ethylene with norbornene or its derivatives using half-metallocene zirconium(iv) catalysts. RSC Advances, 2016, 6, 59590-59599.	3.6	17
90	Spontaneously Healable Thermoplastic Elastomers Achieved through One-Pot Living Ring-Opening Metathesis Copolymerization of Well-Designed Bulky Monomers. ACS Applied Materials & Interfaces, 2016, 8, 12445-12455.	8.0	39

#	Article	IF	CITATIONS
91	Copolymerization of propylene with Si-containing α,ω-diolefins: how steric hindrance of diolefins affects long chain branch formation. Polymer Chemistry, 2016, 7, 2938-2946.	3.9	20
92	Synthesis of High Performance Cyclic Olefin Polymers (COPs) with Ester Group via Ring-Opening Metathesis Polymerization. Polymers, 2015, 7, 1389-1409.	4.5	21
93	Cyclic olefin copolymers of propylene with asymmetric Si-containing α,ω-diolefins: The tailored thermal and mechanical properties. Polymer, 2015, 61, 108-114.	3.8	12
94	Well-defined phosphino-phenolate neutral nickel(ii) catalysts for efficient (co)polymerization of norbornene and ethylene. Dalton Transactions, 2015, 44, 7382-7394.	3.3	28
95	Theoretical investigation of the mechanism of ethylene polymerization with salicylaldiminato vanadium(III) complexes. Chinese Journal of Catalysis, 2015, 36, 657-666.	14.0	7
96	Neutral Nickel Catalysts for Olefin Homo- and Copolymerization: Relationships between Catalyst Structures and Catalytic Properties. Chemical Reviews, 2015, 115, 12091-12137.	47.7	316
97	Efficient synthesis of diverse well-defined functional polypropylenes with high molecular weights and high functional group contents via thiol–halogen click chemistry. Polymer Chemistry, 2015, 6, 1150-1158.	3.9	26
98	Polyethyleneâ€ <i>block</i> â€poly(<i>ε</i> â€caprolactone) diblock copolymers: synthesis and compatibility. Polymer International, 2014, 63, 2017-2022.	3.1	12
99	Synthesis of novel cyclic olefin polymers with excellent transparency and high glass-transition temperature via gradient copolymerization of bulky cyclic olefin and <i>cis</i> -cyclooctene. Journal of Polymer Science Part A, 2014, 52, 3240-3249.	2.3	19
100	Synthesis of (Imido)vanadium(V) Complexes Containing 8-(2,6-Dimethylanilide)-5,6,7-trihydroquinoline Ligands: Highly Active Catalyst Precursors for Ethylene Dimerization. Organometallics, 2014, 33, 1053-1060.	2.3	28
101	Living ring-opening homo- and copolymerisation of ε-caprolactone and <scp> </scp> -lactide by cyclic β-ketiminato aluminium complexes. Dalton Transactions, 2014, 43, 2244-2251.	3.3	47
102	Syntheses of Well-Defined Functional Isotactic Polypropylenes via Efficient Copolymerization of Propylene with ω-Halo-α-alkenes by Post-metallocene Hafnium Catalyst. Macromolecules, 2014, 47, 552-559.	4.8	93
103	Living syndiospecific polymerization of propylene with sterically encumbered titanium complexes activated by MMAO. Polymer Chemistry, 2014, 5, 6510-6522.	3.9	9
104	Highly active half-sandwich chromium(<scp>iii</scp>) catalysts bearing bis(imino)pyrrole ligands for ethylene (co)polymerization. RSC Advances, 2014, 4, 19433-19439.	3.6	18
105	Insights into propylene/ï‰â€haloâ€Î±â€alkenes copolymerization promoted by <i>rac</i> â€ <scp>E</scp> t(<scp>I</scp> nd) ₂ <scp>Z</scp> r <scp>C</scp> l ₂ (pyridylâ€amido)hafnium catalysts. Journal of Polymer Science Part A, 2014, 52, 3421-3428.	2.3	30
106	Synthesis, structural characterization, and ethylene polymerization behavior of (arylimido)vanadium(V) complexes bearing tridentate Schiff base ligands. Journal of Polymer Science Part A, 2014, 52, 2633-2642.	2.3	16
107	Cyclopolymerization of Si-Containing α,ï‰-Diolefins by a Pyridylamidohafnium Catalyst with High Cyclization Selectivity and Stereoselectivity. Macromolecules, 2014, 47, 6627-6634.	4.8	26
108	Copolymerization of ethylene with 10-undecen-1-ol using highly active vanadium(III) precatalysts bearing bis(imino)pyrrolyl ligands. Chinese Journal of Polymer Science (English Edition), 2014, 32, 603-608.	3.8	7

#	Article	IF	CITATIONS
109	Synthesis of cyclic olefin polymers with high glass transition temperature by ring-opening metathesis copolymerization and subsequent hydrogenation. Journal of Polymer Science Part A, 2014, 52, 2654-2661.	2.3	21
110	New Half-Sandwich Chromium(III) Complexes Bearing Phenoxy-Phosphine (Oxide) [O,P(â•O)] Ligands: Synthesis, Structures, and Catalytic Properties for Ethylene (Co)Polymerization. Organometallics, 2013, 32, 4805-4812.	2.3	12
111	Study on the thermal degradation behavior and flameâ€retardant property of polylactide/PEDPP blends. Polymers for Advanced Technologies, 2013, 24, 576-583.	3.2	12
112	Novel vanadium(III) complexes with tridentate phenoxyâ€phosphine [O,P(O),O] ligands: Synthesis, characterization, and catalytic behavior of ethylene polymerization and copolymerization with 10â€undecenâ€1â€ol. Journal of Polymer Science Part A, 2013, 51, 844-854.	2.3	18
113	RAFT polymerization of a novel alleneâ€derived asymmetrical divinyl monomer: A facile strategy to alkeneâ€functionalized hyperbranched vinyl polymers with high degrees of branching. Journal of Polymer Science Part A, 2013, 51, 2959-2969.	2.3	16
114	Facile and efficient synthesis of hyperbranched polyesters based on renewable castor oil. Polymer International, 2013, 62, 1457-1464.	3.1	22
115	Synthesis and characterization of fluoro-substituted β-enaminoketonato titanium complexes and their catalytic behavior of regioselective ethylene/cyclopentadiene copolymerization. Chinese Journal of Polymer Science (English Edition), 2013, 31, 574-582.	3.8	2
116	Ethylene polymerization and ethylene/hexene copolymerizaion with vandium catalysts bearing thiophenolphosphine ligands. Chinese Journal of Polymer Science (English Edition), 2013, 31, 885-893.	3.8	8
117	Thermal, rheological, and mechanical properties of polylactide/poly(diethylene glycol adipate). Polymer Bulletin, 2013, 70, 3487-3500.	3.3	22
118	Preparation of novel cyclic olefin copolymer with high glass transition temperature. Journal of Polymer Science Part A, 2013, 51, 3144-3152.	2.3	15
119	Highly efficient ethylene/norbornene copolymerization by <i>o</i> â€Di(phenyl)phosphanylphenolateâ€based halfâ€titanocene complexes. Journal of Polymer Science Part A, 2013, 51, 1585-1594.	2.3	25
120	Ethylene polymerization and ethylene/hexene copolymerization by vanadium(III) complexes bearing bidentate phenoxy-phosphine oxide ligands. Journal of Polymer Science Part A, 2013, 51, 5298-5306.	2.3	23
121	Water-soluble hyperbranched poly(ester urethane)s based on d,l-alanine: isocyanate-free synthesis, post-functionalization and application. Green Chemistry, 2012, 14, 2243.	9.0	12
122	Synthesis of Novel Cyclic Olefin Copolymer (COC) with High Performance via Effective Copolymerization of Ethylene with Bulky Cyclic Olefin. Macromolecules, 2012, 45, 5397-5402.	4.8	61
123	Synthesis of Novel Bis(βâ€enaminoketonato)titanium Catalyst with High Activity and Excellent Ability to Copolymerize Olefins. Macromolecular Chemistry and Physics, 2012, 213, 2311-2318.	2.2	3
124	Synthesis, structural characterization, and olefin polymerization behavior of vanadium(III) complexes bearing bidentate phenoxyâ€phosphine ligands. Journal of Polymer Science Part A, 2012, 50, 4721-4731.	2.3	13
125	Functionalization of vinylic addition polynorbornenes via efficient copolymerization of norbornene using Ni(II)â€Me complexes. Journal of Polymer Science Part A, 2012, 50, 562-570.	2.3	17
126	Living syndiospecific polymerization of propylene promoted by <i>C</i> ₁ â€symmetric titanium complexes activated by dried MAO. Journal of Polymer Science Part A, 2012, 50, 638-648.	2.3	7

#	Article	IF	CITATIONS
127	Application of thiolâ€ene click chemistry to preparation of functional polyethylene with high molecular weight and high polar group content: Influence of thiol structure and vinyl type on reactivity. Journal of Polymer Science Part A, 2012, 50, 2499-2506.	2.3	37
128	Synthesis of Polyethylene Containing Allene Groups: A Simple and Efficient Route to Functional Polyethylene. Macromolecular Rapid Communications, 2012, 33, 998-1002.	3.9	14
129	Ethylene Homo- and Copolymerization by Single Component Phosphinophenolate Neutral Nickel Catalysts. Acta Agronomica Sinica(China), 2012, 29, 1381.	0.3	3
130	Synthesis, characterization and ethylene (co-)polymerization behavior of half-titanocene 2-(1-(arylimino)ethyl)quinolin-8-olate chlorides. Catalysis Science and Technology, 2011, 1, 1208.	4.1	14
131	Observations and Mechanistic Insights on Unusual Stability of Neutral Nickel Complexes with a Sterically Crowded Metal Center. Organometallics, 2011, 30, 925-934.	2.3	41
132	Facile Functionalization of Polyethylene via Click Chemistry. Macromolecules, 2011, 44, 5659-5665.	4.8	40
133	Synthesis and Characterization of Novel Half-Metallocene-Type Group IV Complexes Containing Phosphine Oxide–Phenolate Chelating Ligands and Their Application to Ethylene Polymerization. Organometallics, 2011, 30, 4052-4059.	2.3	23
134	Ethylene/1-hexene copolymerization by salicylaldiminato vanadium(III) complexes activated with diethylaluminum chloride. Chinese Journal of Polymer Science (English Edition), 2011, 29, 627-633.	3.8	8
135	Synthesis of functional polyethylene via copolymerization of ethylene and substituted allene using bis(β-enaminoketonato)titanium catalysts. Chinese Journal of Polymer Science (English Edition), 2011, 29, 692-698.	3.8	6
136	Ethylene homopolymerizaton and copolymerizaton by vanadium(III) complexes containing tridentate or tetradentate iminopyrrolyl ligands. Journal of Polymer Science Part A, 2011, 49, 2700-2708.	2.3	17
137	Toughening of poly(propylene carbonate) by hyperbranched poly(esterâ€amide) via hydrogen bonding interaction. Polymer International, 2011, 60, 1697-1704.	3.1	38
138	Chainâ€Shuttling Polymerization at Two Different Scandium Sites: Regio―and Stereospecific "Oneâ€Pot― Block Copolymerization of Styrene, Isoprene, and Butadiene. Angewandte Chemie - International Edition, 2011, 50, 12012-12015.	13.8	119
139	Polymerization of (meth)acrylates with aluminum-based initiators. Chinese Journal of Polymer Science (English Edition), 2010, 28, 101-106.	3.8	2
140	Monte Carlo simulation on kinetic behavior of one-pot hyperbranched polymerization based on AA*+CB2. Science China Chemistry, 2010, 53, 2481-2489.	8.2	1
141	Influence of branching on the thermal and crystallization behavior of bimodal polyethylenes synthesized with binary lateâ€transitionâ€metal catalyst combinations. Journal of Applied Polymer Science, 2010, 115, 3045-3055.	2.6	5
142	Synthesis of graft copolymers from a linear polyolefin through a combination of coordination polymerization and atom transfer radical polymerization. Journal of Applied Polymer Science, 2010, 117, 450-457.	2.6	0
143	Dramatic Improvements in Mechanical Properties of Poly(<scp>L</scp> ″actide)/Silica Nanocomposites by Addition of Hyperbranched Poly(ester amide). Macromolecular Materials and Engineering, 2010, 295, 415-419.	3.6	11
144	Ethylene polymerization by the chromium catalysts based on bidentate [O, PO] or [S, P] ligands. Journal of Polymer Science Part A, 2010, 48, 311-319.	2.3	23

#	Article	IF	CITATIONS
145	Vanadium(V) complexes containing tetradentate amine trihydroxy ligands as catalysts for copolymerization of cyclic olefins. Journal of Polymer Science Part A, 2010, 48, 1122-1132.	2.3	51
146	Bis(βâ€enaminoketonato) vanadium (III or IV) complexes as catalysts for olefin polymerization. Journal of Polymer Science Part A, 2010, 48, 3062-3072.	2.3	23
147	Synthesis of novel hyperbranched poly(esterâ€amide)s based on neutral αâ€amino acids via "AD + CBB′â€ coupleâ€monomer approach. Journal of Polymer Science Part A, 2010, 48, 5364-5374.	2.3	11
148	Copper(0)â€mediated living radical polymerization of acrylonitrile: SETâ€LRP or AGETâ€ATRP. Journal of Polymer Science Part A, 2010, 48, 5439-5445.	2.3	51
149	Accessible, Highly Active Single-Component β-Ketiminato Neutral Nickel(II) Catalysts for Ethylene Polymerization. Organometallics, 2010, 29, 2306-2314.	2.3	40
150	Synthesis of Novel Star Polymers with Vinyl-Functionalized Hyperbranched Core via "Arm-First― Strategy. Macromolecules, 2010, 43, 7985-7992.	4.8	28
151	Facile, Efficient Copolymerization of Ethylene with Bicyclic, Non onjugated Dienes by Titanium Complexes Bearing Bis(βâ€Enaminoketonato) Ligands. Advanced Synthesis and Catalysis, 2009, 351, 1505-1511.	. 4.3	16
152	Thermomechanical and optical properties of biodegradable poly(<scp>L</scp> â€lactide)/silica nanocomposites by melt compounding. Journal of Applied Polymer Science, 2009, 114, 3379-3388.	2.6	92
153	Ethylene polymerization by the new chromium catalysts based on aminoâ€pyrrolide ligands. Journal of Polymer Science Part A, 2009, 47, 713-721.	2.3	26
154	CNT templated regioselective enzymatic polymerization of phenol in water and modification of surface of MWNT thereby. Journal of Polymer Science Part A, 2009, 47, 1627-1635.	2.3	43
155	Ethylene polymerization and ethylene/hexene copolymerization with vanadium(III) catalysts bearing heteroatomâ€containing salicylaldiminato ligands. Journal of Polymer Science Part A, 2009, 47, 3573-3582.	2.3	35
156	Living copolymerization of ethylene with norbornene mediated by heteroligated (Salicylaldiminato)(βâ€enaminoketonato)titanium catalysts. Journal of Polymer Science Part A, 2009, 47, 6072-6082.	2.3	24
157	Ethylene polymerizations, and the copolymerizations of ethylene with hexene or norbornene with highly active mono(βâ€enaminoketonato) vanadium(III) catalysts. Journal of Polymer Science Part A, 2008, 46, 2038-2048.	2.3	60
158	Oneâ€pot synthesis and characterization of hyperbranched poly(esterâ€amide)s from commercially available dicarboxylic acids and multihydroxyl secondary amines. Journal of Polymer Science Part A, 2008, 46, 5077-5092.	2.3	18
159	Branched polystyrene with abundant pendant vinyl functional groups from asymmetric divinyl monomer. Journal of Polymer Science Part A, 2008, 46, 6023-6034.	2.3	32
160	Ethylene polymerization by (αâ€diimine)nickel(II) complexes bearing different substituents on <i>para</i> â€position of imines activated with MMAO. Journal of Applied Polymer Science, 2008, 109, 700-707.	2.6	36
161	Synthesis and characterization of novel neutral nickel complexes bearing fluorinated salicylaldiminato ligands and their catalytic behavior for vinylic polymerization of norbornene. Applied Organometallic Chemistry, 2008, 22, 333-340.	3.5	22
162	Syntheses and Ethylene Polymerization Behavior of Supported Salicylaldimine-Based Neutral Nickel(II) Catalysts. Organometallics, 2007, 26, 2609-2615.	2.3	32

#	Article	IF	CITATIONS
163	Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(ester amide). Macromolecules, 2007, 40, 6257-6267.	4.8	188
164	Atom transfer radical polymerization of butadiene using MoO2Cl2/PPh3 as the catalyst. Journal of Applied Polymer Science, 2007, 104, 3517-3522.	2.6	12
165	Reversible addition–fragmentation chain transfer mediated radical polymerization of asymmetrical divinyl monomers targeting hyperbranched vinyl polymers. Journal of Polymer Science Part A, 2007, 45, 26-40.	2.3	60
166	2-Cyanoprop-2-yl dithiobenzoate mediated reversible addition–fragmentation chain transfer polymerization of acrylonitrile targeting a polymer with a higher molecular weight. Journal of Polymer Science Part A, 2007, 45, 1272-1281.	2.3	37
167	Facile synthesis and characterization of hyperbranched poly(ether amide)s generated from Michael addition polymerization of <i>in situ</i> created AB ₂ monomers. Journal of Polymer Science Part A, 2007, 45, 4309-4321.	2.3	13
168	Preparation of nano-hydroxyapatite/poly(l-lactide) biocomposite microspheres. Journal of Nanoparticle Research, 2007, 9, 901-908.	1.9	33
169	Ethylene–propylene copolymerization with bis(β-enaminoketonato) titanium complexes activated with modified methylaluminoxane. Journal of Polymer Science Part A, 2006, 44, 5846-5854.	2.3	29
170	Dibenzyl trithiocarbonate mediated reversible addition-fragmentation chain transfer polymerization of acrylonitrile. Journal of Polymer Science Part A, 2006, 44, 490-498.	2.3	41
171	Preparation of linear α-olefins to high-molecular weight polyethylenes using cationic α-diimine nickel(II) complexes containing chloro-substituted ligands. Journal of Polymer Science Part A, 2006, 44, 1964-1974.	2.3	55
172	Syndiospecific polymerization of styrene with Cp*TiCl((OCH(R)CH2)2NAr)/MMAO. Journal of Polymer Science Part A, 2005, 43, 1562-1568.	2.3	15
173	Copolymerization of ethylene and cyclopentene with bis(?-enaminoketonato) titanium complexes. Journal of Polymer Science Part A, 2005, 43, 1681-1689.	2.3	50
174	Ethylene/α-olefin copolymerization with bis(β-enaminoketonato) titanium complexes activated with modified methylaluminoxane. Journal of Polymer Science Part A, 2005, 43, 6323-6330.	2.3	24
175	Primary and secondary crystallization kinetic analysis of nylon 1212. Polymer International, 2004, 53, 1658-1665.	3.1	29
176	Synthesis, structure and norbornene polymerization behavior of neutral palladium complexes. Polyhedron, 2004, 23, 1619-1627.	2.2	65
177	Preparation and properties of polyimide films codoped with barium and titanium oxides. Journal of Applied Polymer Science, 2002, 83, 1810-1816.	2.6	29
178	Vinylic polymerization of norbornene by neutral nickel(II)-based catalysts. Journal of Polymer Science Part A, 2002, 40, 2680-2685.	2.3	86
179	Preparation and characteristics of polyimide-TiO2 nanocomposite film. Polymer International, 2000, 49, 1543-1547.	3.1	83
180	Synthesis of aromatic polyimides in DMAc containing large amount of water and the properties thereof. Polymer Bulletin, 1999, 42, 47-53.	3.3	6

#	Article	IF	CITATIONS
181	Relationship between structure and gas permeation properties of polyimides prepared from oxydiphthalic dianhydride. Macromolecular Chemistry and Physics, 1997, 198, 2769-2778.	2.2	27
182	Gas Permeation Properties ofCopolyimides from1,4-Bis(3,4-dicarboxyphenoxy)benzeneDianhydride and 2,2-Bis(3,4-dicarboxyphenyl)hexafluoroisopropaneDianhydride. Polymer International, 1997, 42, 121-126.	3.1	10
183	Gas separation properties of aromatic polyetherimides from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride and 3,5-diaminobenzic acid or its esters. Journal of Applied Polymer Science, 1997, 63, 1-7.	2.6	18
184	Gas transport property of homo- and copolyimides from isomeric thiaphthalic dianhydride and oxydianiline. Journal of Applied Polymer Science, 1997, 63, 1821-1826.	2.6	8
185	Structure/Permeability and Permselectivity Relationship of Polyetherimides from 1,4-Bis(3,4-dicarboxyphenoxy) Benzene Dianhydride. I. Polymer International, 1996, 40, 57-62.	3.1	4
186	Comparative study on polyimides from 3,3?-and 4,4?-linked diphthalic anhydride. Journal of Applied Polymer Science, 1996, 59, 923-930.	2.6	35
187	Effects of molecular structure on the permeability and permselectivity of aromatic polyimides. Journal of Applied Polymer Science, 1996, 61, 741-748.	2.6	69
188	Structure and thermal properties of vinylidene chloride/acrylics copolymers. Journal of Applied Polymer Science, 1996, 61, 2397-2402.	2.6	3
189	Effects of molecular structure on the permeability and permselectivity of aromatic polyimides. , 1996, 61, 741.		1
190	Sequentially bridging anionic addition and ring-opening polymerization by cooperative organocatalysis: Well-defined block copolymers from methacrylates and cyclic esters. Polymer Chemistry, 0, , .	3.9	6