Qi-Lin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9401218/publications.pdf

Version: 2024-02-01

331670 434195 1,060 38 21 31 h-index citations g-index papers 42 42 42 605 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Metal-free diastereoselective construction of bridged ketal spirooxindoles via a Michael addition-inspired sequence. Chemical Communications, 2017, 53, 11201-11204.	4.1	72
2	An organocatalytic asymmetric sequential allylic alkylation–cyclization of Morita–Baylis–Hillman carbonates and 3-hydroxyoxindoles. Chemical Communications, 2013, 49, 9422.	4.1	68
3	Regio- and diastereoselective dearomatizations of $\langle i \rangle N \langle i \rangle$ -alkyl activated azaarenes: the maximization of the reactive sites. Chemical Science, 2020, 11, 1418-1424.	7.4	65
4	Diastereoselective Construction of Indole-Bridged Chroman Spirooxindoles through a TfOH-Catalyzed Michael Addition-Inspired Cascade Reaction. Journal of Organic Chemistry, 2018, 83, 3679-3687.	3.2	58
5	An Unexpected FeCl ₃ -Catalyzed Cascade Reaction of Indoles and <i>>o</i> >-Hydroxychalcones for the Assembly of Chromane-Bridged Polycyclic Indoles. Organic Letters, 2018, 20, 3451-3454.	4.6	46
6	A Copper-Catalyzed Friedel–Crafts Alkylation/Cyclization Sequence: an Approach to Functionalized Pyrrolo[1,2- <i>a</i>]indole Spirooxindoles and 9 <i>H</i> -Pyrrolo[1,2- <i>a</i>]indoles. Journal of Organic Chemistry, 2017, 82, 5669-5677.	3.2	45
7	An organocatalytic domino Michael-alkylation reaction: highly enantioselective construction of spiro-cyclopentanoneoxindoles and tetronic acid scaffolds. Chemical Communications, 2014, 50, 14601-14604.	4.1	44
8	Enantioselective α-Amination of Branched Aldehydes Promoted by Simple Chiral Primary Amino Acids. Journal of Organic Chemistry, 2011, 76, 4661-4664.	3.2	43
9	Regioselective and Diastereoselective Dearomative Multifunctionalization of In-Situ-Activated Azaarenes: An Access to Bridged Azaheterocycles. Organic Letters, 2020, 22, 5068-5073.	4.6	39
10	An unprecedented base-promoted domino reaction of methyleneindolinones and N-tosyloxycarbamates for the construction of bispirooxindoles and spiroaziridine oxindoles. Chemical Communications, 2015, 51, 10726-10729.	4.1	37
11	A DBU-catalyzed Michael–Pinner–isomerization cascade reaction of 3-hydroxyoxindoles with isatylidene malononitriles: access to highly functionalized bispirooxindoles containing a fully substituted dihydrofuran motif. Organic and Biomolecular Chemistry, 2017, 15, 984-990.	2.8	36
12	Construction of bridged polycycles through dearomatization strategies. Organic and Biomolecular Chemistry, 2021, 19, 3960-3982.	2.8	36
13	Skeletal remodeling of chalcone-based pyridinium salts to access isoindoline polycycles and their bridged derivatives. Chemical Science, 2021, 12, 15389-15398.	7.4	35
14	Chalcone-Based Pyridinium Salts and Their Diastereoselective Dearomatization To Access Bibridged Benzoazepines. Organic Letters, 2020, 22, 873-878.	4.6	33
15	An unexpected cascade reaction of 3-hydroxyoxindoles with coumarin-3-carboxylates to construct 2,3-dihydrobenzofuran spirooxindoles. Chemical Communications, 2019, 55, 13681-13684.	4.1	30
16	Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Organic Chemistry Frontiers, 2021, 8, 204-211.	4.5	30
17	Assembly of functionalized π-extended indolizine polycycles through dearomative [3+2] cycloaddition/oxidative decarbonylation. Chemical Communications, 2021, 57, 359-362.	4.1	28
18	An unexpected multi-component one-pot cascade reaction to access furanobenzodihydropyran-fused polycyclic heterocycles. Chemical Communications, 2019, 55, 5207-5210.	4.1	27

#	Article	IF	CITATIONS
19	Diazo Activation with Diazonium Salts: Synthesis of Indazole and 1,2,4-Triazole. Organic Letters, 2020, 22, 4151-4155.	4.6	26
20	Dearomative Periphery Modification of Quinolinium Salts to Assemble Ring-Encumbered Pyrrolidine–Tetrahydroquinoline Polycycles. Organic Letters, 2022, 24, 2008-2013.	4.6	23
21	Construction of bridged cyclic <i>N</i> , <i>O</i> -ketal spirooxindoles through a Michael addition/ <i>N</i> , <i>O</i> -ketalization sequence. Organic and Biomolecular Chemistry, 2018, 16, 1751-1759.	2.8	22
22	A Brønsted Acidâ€Catalyzed Michael Addition/Cyclization Sequence for the Diastereoselective Assembly of Chromanâ€Bridged Polycyclic Isoindolinones. Advanced Synthesis and Catalysis, 2019, 361, 456-461.	4.3	22
23	Diastereoselective construction of pyrrolo $[2,1-a]$ is oquinoline-based bispirooxindoles through a three-component $[3+2]$ cycloaddition. Organic and Biomolecular Chemistry, 2018, 16, 6025-6034.	2.8	21
24	Diastereoselective trifunctionalization of pyridinium salts to access structurally crowded azaheteropolycycles. Chemical Communications, 2021, 57, 9402-9405.	4.1	20
25	A copper-catalyzed tandem reaction for the construction of coumarin fused 9H-pyrrolo[1,2-a]indoles. Organic and Biomolecular Chemistry, 2017, 15, 8729-8737.	2.8	19
26	A FeCl ₃ -catalyzed highly regioselective 1,2-addition/substitution sequence for the construction of coumarin-substituted bis(indolyl)methanes. Organic and Biomolecular Chemistry, 2016, 14, 4420-4425.	2.8	18
27	Organocatalytic asymmetric cascade Michael/hemiketalization/retro-aldol reaction of 3-acetyl-oxindole with \hat{l}^2 , \hat{l}^3 -unsaturated ketoesters catalyzed by bifunctional amino-squaramides. Tetrahedron, 2014, 70, 8665-8671.	1.9	16
28	Recent Advances in the Construction of Bridged Rings through Cycloadditions and Cascade Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 12.	1.3	16
29	Diastereoselective construction of 4-indole substituted chromans bearing a ketal motif through a three-component Friedel–Crafts alkylation/ketalization sequence. RSC Advances, 2018, 8, 15641-15651.	3.6	14
30	DMAP-catalyzed decarboxylative [3+2] cycloadditions: A strategy for diastereoselective synthesis of trifluoromethylated chromanone-fused pyrrolidinyl spirooxindoles. Tetrahedron, 2020, 76, 131678.	1.9	14
31	A New Cyclization/Decarboxylation Reaction of Isatins with Acyl Chlorides for the Facile Synthesis of 3â€Alkenylâ€Oxindoles. Chinese Journal of Chemistry, 2014, 32, 844-852.	4.9	10
32	Unexpected Cascade Reactions of Ortho â€Hydroxyenaminones and β,γâ€Unsaturated αâ€Ketoesters to Access Hydrogenated Benzoxazolepolycycles and PyrroleâˆPhenol Atropisomers. Advanced Synthesis and Catalysis, 2019, 361, 4893-4901.	4.3	9
33	A combination of polarity reversal, Diels–Alder cycloaddition and skeletal remodeling to access pyridine-fused nitrones. Chemical Communications, 2022, 58, 4775-4778.	4.1	9
34	Chiral αâ€Arylethanamines: An Organocatalyst for the Enantioselective αâ€Amination of Branched Aldehydes. European Journal of Organic Chemistry, 2013, 2013, 2864-2868.	2.4	8
35	Diastereoselective construction of bridged piperidines through an interrupted dearomative reduction. Chemical Communications, 2022, 58, 7964-7967.	4.1	8
36	Substrate-directed divergent synthesis of fused indole polycycles through Rh(<scp>ii</scp>)-catalyzed cascade reactions of bis(diazo)indolin-2-ones. Chemical Communications, 2022, 58, 8576-8579.	4.1	7

#	Article	IF	CITATIONS
37	New 1,3-dipolar cycloaddition/dehydrogenation of azomethines ylides and azodicarboxylates: direct and effective construction of unsaturated 1,2,4-triazolines. Tetrahedron Letters, 2012, 53, 2985-2988.	1.4	5
38	Decarboxylative-Mediated Regioselective 1,3-Dipolar Cycloaddition for Diversity-Oriented Synthesis of Structurally exo′-Selective Spiro[oxindole-pyrrolidine-dihydrocoumarin] Hybrids. Synthesis, 2020, 52, .	2.3	1