Francesco R Stellacci

List of Publications by Citations

Source: https://exaly.com/author-pdf/9400584/francesco-r-stellacci-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 227
 18,352
 66
 132

 papers
 citations
 h-index
 g-index

 268
 20,260
 12
 7

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
227	Effect of surface properties on nanoparticle-cell interactions. <i>Small</i> , 2010 , 6, 12-21	11	1964
226	Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. <i>Nature Materials</i> , 2008 , 7, 588-95	27	1058
225	Superwetting nanowire membranes for selective absorption. <i>Nature Nanotechnology</i> , 2008 , 3, 332-6	28.7	912
224	Antibacterial activity of silver nanoparticles: A surface science insight. <i>Nano Today</i> , 2015 , 10, 339-354	17.9	778
223	Low-voltage organic transistors with an amorphous molecular gate dielectric. <i>Nature</i> , 2004 , 431, 963-6	50.4	702
222	Divalent metal nanoparticles. <i>Science</i> , 2007 , 315, 358-61	33.3	571
221	Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. <i>Nature Materials</i> , 2004 , 3, 330-6	27	500
220	Identifying champion nanostructures for solar water-splitting. <i>Nature Materials</i> , 2013 , 12, 842-9	27	474
219	A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. <i>Plasmonics</i> , 2010 , 5, 85-97	2.4	470
218	Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices. <i>Nano Letters</i> , 2004 , 4, 1079-1083	11.5	329
217	A general mechanism for intracellular toxicity of metal-containing nanoparticles. <i>Nanoscale</i> , 2014 , 6, 7052-61	7.7	320
216	Conductivity in organic semiconductors hybridized with the vacuum field. <i>Nature Materials</i> , 2015 , 14, 1123-9	27	305
215	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020 , 14, 638	3 3-66 #00	6 290
214	Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. <i>Nature Materials</i> , 2018 , 17, 195-203	27	229
213	Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. <i>Physical Review Letters</i> , 2007 , 99, 226106	7.4	226
212	Silver nanoparticles with broad multiband linear optical absorption. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5921-6	16.4	223
211	High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles. <i>Chemistry of Materials</i> , 2006 , 18, 3297-3301	9.6	223

(2011-2009)

210	The effect of nanometre-scale structure on interfacial energy. <i>Nature Materials</i> , 2009 , 8, 837-42	27	196
209	From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells. <i>Chemistry of Materials</i> , 2017 , 29, 3490-3498	9.6	194
208	Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers. <i>Nano Letters</i> , 2013 , 13, 4060-7	11.5	192
207	Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 6853-6863	3.4	188
206	Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. <i>Nature Materials</i> , 2012 , 11, 978-85	27	187
205	Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. <i>Nature Communications</i> , 2011 , 2, 335	17.4	182
204	Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. <i>American Journal of Human Genetics</i> , 2010 , 87, 250-7	11	179
203	From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11135-49	16.4	174
202	Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning. <i>Advanced Materials</i> , 2002 , 14, 194-198	24	174
2 01	Nanotechnology-based disinfectants and sensors for SARS-CoV-2. <i>Nature Nanotechnology</i> , 2020 , 15, 618-621	28.7	171
200	Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. <i>Nature Communications</i> , 2014 , 5, 4482	17.4	163
199	Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. <i>Nature Nanotechnology</i> , 2010 , 5, 401-5	28.7	146
198	Chains of Superparamagnetic Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 4294-4299	24	143
197	Determination of monolayer-protected gold nanoparticle ligand-shell morphology using NMR. <i>Nature Communications</i> , 2012 , 3, 1182	17.4	139
196	Ag44(SR)30(4-): a silver-thiolate superatom complex. <i>Nanoscale</i> , 2012 , 4, 4269-74	7.7	138
195	Direct visualization of single ions in the Stern layer of calcite. <i>Langmuir</i> , 2013 , 29, 2207-16	4	133
194	Size Fractionation of Metal Nanoparticles by Membrane Filtration. <i>Advanced Materials</i> , 2005 , 17, 532-5	3 5 . ₄	133
193	Ordering surfaces on the nanoscale: implications for protein adsorption. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1438-50	16.4	130

192	Hydrophobic meshes for oil spill recovery devices. ACS Applied Materials & amp; Interfaces, 2013, 5, 774-	89 .5	128
191	Photoresponsive Hydrogel Microstructure Fabricated by Two-Photon Initiated Polymerization. <i>Advanced Functional Materials</i> , 2002 , 12, 611-614	15.6	126
190	Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations. <i>ACS Nano</i> , 2014 , 8, 5402-12	16.7	115
189	Concept of a molecular charge storage dielectric layer for organic thin-film memory transistors. <i>Advanced Materials</i> , 2010 , 22, 2525-8	24	109
188	Assembly of metal nanoparticles into nanogaps. Small, 2007, 3, 488-99	11	106
187	A High Quantum Yield Diarylethene-Backbone Photochromic Polymer. <i>Advanced Materials</i> , 1999 , 11, 292-295	24	105
186	The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 9886-91	11.5	98
185	Low-voltage p- and n-type organic self-assembled monolayer field effect transistors. <i>Nano Letters</i> , 2011 , 11, 156-9	11.5	97
184	Size limitations for the formation of ordered striped nanoparticles. <i>Journal of the American Chemical Society</i> , 2008 , 130, 798-9	16.4	96
183	Shape-controlled growth of micrometer-sized gold crystals by a slow reduction method. <i>Small</i> , 2006 , 2, 1046-50	11	96
182	Phase separation on mixed-monolayer-protected metal nanoparticles: a study by infrared spectroscopy and scanning tunneling microscopy. <i>Small</i> , 2007 , 3, 814-7	11	93
181	Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. <i>Nanoscale</i> , 2013 , 5, 6928-35	7.7	92
180	Evolution of Nanoparticle Protein Corona across the Blood-Brain Barrier. ACS Nano, 2018, 12, 7292-730	0 16.7	92
179	Water-soluble amphiphilic gold nanoparticles with structured ligand shells. <i>Chemical Communications</i> , 2008 , 196-8	5.8	88
178	Modified cyclodextrins as broad-spectrum antivirals. <i>Science Advances</i> , 2020 , 6, eaax9318	14.3	87
177	Electrical method to quantify nanoparticle interaction with lipid bilayers. ACS Nano, 2013, 7, 932-42	16.7	84
176	Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes. <i>ACS Nano</i> , 2014 , 8, 8992-9002	16.7	82
175	Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles. <i>Journal of the American Chemical Society</i> , 2003 , 125, 328-9	16.4	82

(2016-2003)

174	Bis(dioxaborine) compounds with large two-photon cross sections, and their use in the photodeposition of silver. <i>Chemical Communications</i> , 2003 , 1490-1491	5.8	80
173	Edible sensors for meat and seafood freshness. Sensors and Actuators B: Chemical, 2018, 259, 1108-1112	28.5	77
172	Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging. <i>ACS Nano</i> , 2011 , 5, 2587-92	16.7	75
171	High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. <i>Nature Communications</i> , 2017 , 8, 14069	17.4	74
170	Silver Nanoparticles with Broad Multiband Linear Optical Absorption. <i>Angewandte Chemie</i> , 2009 , 121, 6035-6040	3.6	74
169	High-resolution scanning tunneling microscopy characterization of mixed monolayer protected gold nanoparticles. <i>ACS Nano</i> , 2013 , 7, 8529-39	16.7	73
168	Photoswitchable flexible and shape-persistent dendrimers: comparison of the interplay between a photochromic azobenzene core and dendrimer structure. <i>Journal of the American Chemical Society</i> , 2004 , 126, 2181-5	16.4	72
167	Stable Ultraconcentrated and Ultradilute Colloids of CsPbX (X = Cl, Br) Nanocrystals Using Natural Lecithin as a Capping Ligand. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19839-19849	16.4	71
166	A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles. <i>Nature Communications</i> , 2016 , 7, 13121	17.4	70
165	Low-voltage self-assembled monolayer field-effect transistors on flexible substrates. <i>Advanced Materials</i> , 2013 , 25, 4511-4	24	69
164	A scalable synthesis of highly stable and water dispersible Ag44(SR)30 nanoclusters. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10148	13	66
163	Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles. <i>ACS Nano</i> , 2012 , 6, 629-40	16.7	66
162	Synthesis and characterization of Janus gold nanoparticles. <i>Advanced Materials</i> , 2012 , 24, 3857-63	24	66
161	Oligonucleotide delivery by cell-penetrating "striped" nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 12312-12315	16.4	66
160	Characterization of Ligand Shell for Mixed-Ligand Coated Gold Nanoparticles. <i>Accounts of Chemical Research</i> , 2017 , 50, 1911-1919	24.3	65
159	A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. <i>Scientific Reports</i> , 2017 , 7, 4636	4.9	63
158	Long-lived charge-separated states in ligand-stabilized silver clusters. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11856-9	16.4	61
157	Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging. Journal of Physical Chemistry C, 2016 , 120, 20860-20868	3.8	57

156	Supramolecular nanostamping: using DNA as movable type. Nano Letters, 2005, 5, 1061-4	11.5	56
155	Diarylethene-based photochromic rewritable optical memories: on the possibility of reading in the mid-infrared. <i>Chemical Physics Letters</i> , 1999 , 302, 563-570	2.5	54
154	Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. <i>Nature Communications</i> , 2016 , 7, 13520	17.4	51
153	Host-guest chemistry with water-soluble gold nanoparticle supraspheres. <i>Nature Nanotechnology</i> , 2017 , 12, 170-176	28.7	48
152	Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. <i>European Biophysics Journal</i> , 2017 , 46, 749-771	1.9	46
151	Amphiphilic amino acids: a key to adsorbing proteins to nanopatterned surfaces?. <i>Chemical Science</i> , 2013 , 4, 928-937	9.4	45
150	Effect of composition on the catalytic properties of mixed-ligand-coated gold nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7900-5	16.4	45
149	High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16774-5	16.4	45
148	Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. <i>Biomaterials Science</i> , 2018 , 7, 113-124	7.4	45
147	Nanosensors for early cancer detection and for therapeutic drug monitoring. <i>Nanomedicine</i> , 2015 , 10, 3495-512	5.6	43
146	Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes. <i>Nanoscale</i> , 2015 , 7, 11420-32	7.7	42
145	Contact angle and adsorption energies of nanoparticles at the air-liquid interface determined by neutron reflectivity and molecular dynamics. <i>Nanoscale</i> , 2015 , 7, 5665-73	7.7	42
144	Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles. <i>Optics Express</i> , 2008 , 16, 5544-55	3.3	40
143	Order/Disorder Dynamics in a Dodecanethiol-Capped Gold Nanoparticles Supracrystal by Small-Angle Ultrafast Electron Diffraction. <i>Nano Letters</i> , 2016 , 16, 2705-13	11.5	38
142	Striped nanowires and nanorods from mixed SAMS. <i>Nanoscale</i> , 2011 , 3, 3244-50	7.7	37
141	Amorphous CaCO: Influence of the Formation Time on Its Degree of Hydration and Stability. Journal of the American Chemical Society, 2018 , 140, 14289-14299	16.4	37
140	Scanning tunneling microscopy and small angle neutron scattering study of mixed monolayer protected gold nanoparticles in organic solvents. <i>Chemical Science</i> , 2014 , 5, 1232	9.4	35
139	Dynamic cellular uptake of mixed-monolayer protected nanoparticles. <i>Biointerphases</i> , 2012 , 7, 17	1.8	34

(2017-2010)

138	Compartmentalization of Gold Nanocrystals in Polymer Microparticles using Electrohydrodynamic Co-Jetting. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 176-82	4.8	34
137	Gold nanoparticles protected by fluorinated ligands for 19F MRI. <i>Chemical Communications</i> , 2013 , 49, 8794-6	5.8	33
136	Mixed-ligand nanoparticles as supramolecular receptors. Small, 2011, 7, 1961-6	11	33
135	Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering. <i>Nature Communications</i> , 2018 , 9, 1343	17.4	32
134	Two-photon excited fluorescence enhancement for ultrasensitive DNA detection on large-area gold nanopatterns. <i>Advanced Materials</i> , 2010 , 22, 2542-6	24	32
133	Ultrafast photoinduced ring-closure dynamics of a diarylethene polymer. <i>Chemical Physics Letters</i> , 2002 , 359, 278-282	2.5	31
132	Amphiphilic nanoparticle delivery enhances the anticancer efficacy of a TLR7 ligand via local immune activation. <i>Biomaterials</i> , 2019 , 190-191, 111-120	15.6	31
131	In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiOlsurface of Dye-Sensitized Solar Cells. <i>ACS Applied Materials & Dye-Sensitized Solar Cells</i> . 7, 10834-42	9.5	30
130	Nanoscale topography and chemistry affect embryonic stem cell self-renewal and early differentiation. <i>Advanced Healthcare Materials</i> , 2013 , 2, 1644-50	10.1	30
129	Quantitative analysis of scanning tunneling microscopy images of mixed-ligand-functionalized nanoparticles. <i>Langmuir</i> , 2013 , 29, 13723-34	4	30
128	Artificial surface-modified SiMhanopores for single surface-modified gold nanoparticle scanning. <i>Small</i> , 2011 , 7, 455-9	11	30
127	Relationship Between Structure and Solubility of Thiol-Protected Silver Nanoparticles and Assemblies. <i>Topics in Catalysis</i> , 2008 , 47, 32-41	2.3	30
126	Growth and Dissolution of Calcite in the Presence of Adsorbed Stearic Acid. <i>Langmuir</i> , 2015 , 31, 7563-7	14	29
125	Future Perspectives Towards the Use of Nanomaterials for Smart Food Packaging and Quality Control. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 408-416	3.1	29
124	Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces. <i>Nature Communications</i> , 2016 , 7, 13064	17.4	29
123	Doping molecular wires. <i>Nano Letters</i> , 2009 , 9, 2559-64	11.5	29
122	Response to Btripy Nanoparticles Revisited Small, 2012, 8, 3720-3726	11	28
121	Core-Shell Silver Nanoparticles in Endodontic Disinfection Solutions Enable Long-Term Antimicrobial Effect on Oral Biofilms. <i>ACS Applied Materials & District Materials & Distri</i>	9.5	27

120	Near-field excitation and near-field detection of propagating surface plasmon polaritons on Au waveguide structures. <i>Applied Physics Letters</i> , 2009 , 94, 243118	3.4	27
119	Thermodynamic Study of the Reactivity of the Two Topological Point Defects Present in Mixed Self-Assembled Monolayers on Gold Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 4243-4247	24	27
118	Unraveling the complexity of amyloid polymorphism using gold nanoparticles and cryo-EM. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6866-6874	11.5	27
117	Colloidal stability of self-assembled monolayer-coated gold nanoparticles: the effects of surface compositional and structural heterogeneity. <i>Langmuir</i> , 2013 , 29, 11560-6	4	26
116	Evolution of the Ligand Shell Morphology during Ligand Exchange Reactions on Gold Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13521-13525	16.4	26
115	Fabrication of biomolecular devices via supramolecular contact-based approaches. <i>Chemical Society Reviews</i> , 2010 , 39, 30-7	58.5	26
114	Exploiting substrate stress to modify nanoscale SAM patterns. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16377-9	16.4	25
113	Chemically directed assembly of monolayer protected gold nanoparticles on lithographically generated patterns. <i>Journal of Materials Chemistry</i> , 2006 , 16, 962		25
112	Electrophysiological study of single gold nanoparticle/alpha-Hemolysin complex formation: a nanotool to slow down ssDNA through the alpha-Hemolysin nanopore. <i>Small</i> , 2009 , 5, 1273-8	11	24
111	Effect of Ligand Shell Structure on the Interaction between Monolayer-Protected Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6279-6284	3.8	24
110	A Generic Approach Towards Nanostructured Surfaces Based on Supramolecular Nanostamping on Reactive Polymer Coatings. <i>Advanced Materials</i> , 2007 , 19, 4333-4337	24	24
109	Microstructured Fibers for the Production of Food. Advanced Materials, 2019, 31, e1807282	24	24
108	Chemical sensing with Au and Ag nanoparticles. <i>Chemical Society Reviews</i> , 2021 , 50, 1269-1304	58.5	24
107	Structure-Property Relationships of Amphiphilic Nanoparticles That Penetrate or Fuse Lipid Membranes. <i>Bioconjugate Chemistry</i> , 2018 , 29, 1131-1140	6.3	23
106	Advances in Janus nanoparticles. <i>Chimia</i> , 2013 , 67, 811-8	1.3	23
105	Generation of Various Complex Patterned Structures From a Single Ellipsoidal Dot Prepattern by Capillary Force Lithography. <i>Advanced Materials</i> , 2007 , 19, 4392-4398	24	23
104	Polymeric Micelles Loading Proteins through Concurrent Ion Complexation and pH-Cleavable Covalent Bonding for In Vivo Delivery. <i>Macromolecular Bioscience</i> , 2020 , 20, e1900161	5.5	23
103	High-Surface-Area Porous Platinum Electrodes for Enhanced Charge Transfer. <i>Advanced Energy Materials</i> , 2014 , 4, 1400510	21.8	22

(2019-2020)

102	Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. <i>Scientific Reports</i> , 2020 , 10, 9052	4.9	21
101	Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants. <i>Advanced Functional Materials</i> , 2018 , 28, 1804076	15.6	21
100	Application of supramolecular nanostamping to the replication of DNA nanoarrays. <i>Nano Letters</i> , 2007 , 7, 3493-8	11.5	21
99	Carbene-functionalized single-walled carbon nanotubes and their electrical properties. <i>Small</i> , 2011 , 7, 1257-63	11	20
98	Evolution of langmuir film of nanoparticles through successive compression cycles. <i>Small</i> , 2011 , 7, 2526	5-32	20
97	Optical limiting with complex plasmonic nanoparticles. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 06	5 <u>@.</u> 9⁄1	20
96	On the effect of ligand shell heterogeneity on nanoparticle/protein binding thermodynamics. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 174, 367-373	6	20
95	Two-Dimensional Nanoparticle Supracrystals: A Model System for Two-Dimensional Melting. <i>Nano Letters</i> , 2016 , 16, 1352-8	11.5	19
94	Sensing single mixed-monolayer protected gold nanoparticles by the Hemolysin nanopore. <i>Analytical Chemistry</i> , 2013 , 85, 10149-58	7.8	19
93	Morphology control in self-assembled monolayers written by dip pen nanolithography. <i>Langmuir</i> , 2004 , 20, 4795-8	4	19
92	Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution. <i>ACS Nano</i> , 2019 , 13, 8749-8759	16.7	18
91	Materials science. Droplets out of equilibrium. <i>Science</i> , 2013 , 341, 243-4	33.3	18
90	Erythrocyte incubation as a method for free-dye presence determination in fluorescently labeled nanoparticles. <i>Molecular Pharmaceutics</i> , 2013 , 10, 875-82	5.6	18
89	Response to "Critical Assessment of the Evidence for Striped Nanoparticles". <i>PLoS ONE</i> , 2015 , 10, e013	5 <u>5,9</u> 4	18
88	An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. <i>Nature Nanotechnology</i> , 2021 , 16, 918-925	28.7	18
87	Ubiquitous aluminium contamination in water and amyloid hybrid membranes as a sustainable possible solution. <i>Chemical Communications</i> , 2019 , 55, 11143-11146	5.8	17
86	Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T Contrast Agent. <i>Bioconjugate Chemistry</i> , 2017 , 28, 161-170	6.3	17
85	Modular soft robotic microdevices for dexterous biomanipulation. <i>Lab on A Chip</i> , 2019 , 19, 778-788	7.2	16

84	Freestanding Ultrathin Nanoparticle Membranes Assembled at Transient Liquid Liquid Interfaces. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600191	4.6	15
83	Towards Industrial-Scale Molecular Nanolithography. <i>Advanced Functional Materials</i> , 2006 , 16, 15-16	15.6	15
82	Statistical Analysis of Scanning Tunneling Microscopy Images of 'Striped' Mixed Monolayer Protected Gold Nanoparticles. <i>Journal of Scanning Probe Microscopy</i> , 2009 , 4, 24-35		15
81	Phase behaviour and applications of a binary liquid mixture of methanol and a thermotropic liquid crystal. <i>Soft Matter</i> , 2018 , 14, 4615-4620	3.6	14
8o	Fluorinated and Charged Hydrogenated Alkanethiolates Grafted on Gold: Expanding the Diversity of Mixed-Monolayer Nanoparticles for Biological Applications. <i>Bioconjugate Chemistry</i> , 2017 , 28, 43-52	6.3	14
79	Polymer-protected sub-2-nm-nanogap fabrication for biological sensing in near-physiological conditions. <i>Small</i> , 2009 , 5, 2797-801	11	14
78	FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice. <i>Cells</i> , 2019 , 8,	7.9	13
77	Comparative STM studies of mixed ligand monolayers on gold nanoparticles in air and in 1-phenyloctane. <i>Chemical Communications</i> , 2014 , 50, 10456-9	5.8	13
76	Ligand-shell-directed assembly and depolymerization of patchy nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 968-72	16.4	13
75	A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces. <i>Europhysics Letters</i> , 2017 , 119, 66001	1.6	13
74	Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals. <i>Chemical Communications</i> , 2012 , 48, 9765-7	5.8	13
73	New mixed ligand coated platinum nanoparticles for heterogeneous catalytic applications. <i>Catalysis Today</i> , 2012 , 198, 77-84	5.3	13
72	Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 18470-18476	11.5	13
71	Diameter Effect on the Sidewall Functionalization of Single-Walled Carbon Nanotubes by Addition of Dichlorocarbene. <i>Advanced Functional Materials</i> , 2012 , 22, 5216-5223	15.6	12
70	A silica-based magnetic platform decorated with mixed ligand gold nanoparticles: a recyclable catalyst for esterification reactions. <i>Chemical Communications</i> , 2016 , 52, 5573-6	5.8	11
69	An integrated system for large scale scanning of nuclear emulsions. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2013 , 703, 204-212	1.2	11
68	Oligonucleotide Delivery by Cell-Penetrating Striped Nanoparticles. <i>Angewandte Chemie</i> , 2011 , 123, 12520-12523	3.6	11
67	Solvent mediated assembly of nanoparticles confined in mesoporous alumina. <i>Physical Review B</i> , 2006 , 73,	3.3	11

(2016-2018)

66	Mass spectrometry and Monte Carlo method mapping of nanoparticle ligand shell morphology. <i>Nature Communications</i> , 2018 , 9, 4478	17.4	11
65	The van der Waals Interactions of n-Alkanethiol-Covered Surfaces: From Planar to Curved Surfaces. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16526-16530	16.4	10
64	Novel Sensing Strategies Based on Monolayer Protected Gold Nanoparticles for the Detection of Metal Ions and Small Molecules. <i>Chemical Record</i> , 2018 , 18, 819-828	6.6	10
63	Self-Assembled Monolayer of Short Carboxyl-Terminated Molecules Investigated with ex Situ Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7431-7435	3.8	10
62	Stamping with high information density. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2868		10
61	Broad-Spectrum Antiviral Agents Based on Multivalent Inhibitors of Viral Infectivity. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001433	10.1	10
60	Contact Printing Beyond Surface Roughness: Liquid Supramolecular Nanostamping. <i>Advanced Materials</i> , 2007 , 19, 4338-4342	24	9
59	Cross beam lithography (FIB+EBL) and dip pen nanolithography for nanoparticle conductivity measurements. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2005 , 23, 2806		9
58	From a photochromic diarylethene monomer to a dopable photochromic polymer: optical properties. <i>Synthetic Metals</i> , 1999 , 102, 979-980	3.6	9
57	SARS-CoV-2 Inhibition by Sulfonated Compounds. <i>Microorganisms</i> , 2020 , 8,	4.9	9
56	New approach for time-resolved and dynamic investigations on nanoparticles agglomeration. <i>Nano Research</i> , 2020 , 13, 2847-2856	10	9
55	Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. <i>Nanoscale</i> , 2020 , 12, 19746-19759	7.7	9
54	Advances in the development of entry inhibitors for sialic-acid-targeting viruses. <i>Drug Discovery Today</i> , 2021 , 26, 122-137	8.8	9
53	Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers. <i>Nanoscale</i> , 2018 , 10, 23027-23036	7.7	9
52	Self-aligned nanolithography by selective polymer dissolution. <i>Nanoscale</i> , 2010 , 2, 2302-6	7.7	8
51	Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning 2002, 14, 194		8
50	pH-Mediated molecular differentiation for fluorimetric quantification of chemotherapeutic drugs in human plasma. <i>Chemical Communications</i> , 2018 , 54, 1485-1488	5.8	7
49	Synthesis and characterization of mixed ligand chiral nanoclusters. <i>Dalton Transactions</i> , 2016 , 45, 1129	- 7- <u>д</u> . <u></u> g0	7

48	Parallel fabrication of polymer-protected nanogaps. <i>Nanotechnology</i> , 2010 , 21, 385303	3.4	7
47	Ultra-fast and scalable sidewall functionalisation of single-walled carbon nanotubes with carboxylic acid. <i>Chemical Communications</i> , 2008 , 2788-90	5.8	7
46	Sulfonated Nanomaterials with Broad-Spectrum Antiviral Activity Extending beyond Heparan Sulfate-Dependent Viruses. <i>Antimicrobial Agents and Chemotherapy</i> , 2020 , 64,	5.9	7
45	Distribution of superparamagnetic Au/Fe nanoparticles in an isolated guinea pig brain with an intact blood brain barrier. <i>Nanoscale</i> , 2018 , 10, 22420-22428	7.7	7
44	Nanoparticle-Induced Disorder at Complex Liquid-Liquid Interfaces: Effects of Curvature and Compositional Synergy on Functional Surfaces. <i>ACS Nano</i> , 2021 , 15, 14285-14294	16.7	7
43	Multidimensional Characterization of Mixed Ligand Nanoparticles Using Small Angle Neutron Scattering. <i>Chemistry of Materials</i> , 2019 , 31, 6750-6758	9.6	6
42	The Clustering of mApoE Anti-Amyloidogenic Peptide on Nanoparticle Surface Does Not Alter Its Performance in Controlling Beta-Amyloid Aggregation. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	6
41	Co-precipitation of oppositely charged nanoparticles: the case of mixed ligand nanoparticles. <i>Journal Physics D: Applied Physics</i> , 2015 , 48, 434001	3	6
40	Capturing a DNA duplex under near-physiological conditions. <i>Applied Physics Letters</i> , 2010 , 97, 163702	3.4	6
39	Reversible aggregation of porphyrins in the solid stateView all notes. <i>Journal of Experimental Nanoscience</i> , 2008 , 3, 53-60	1.9	6
38	Determination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 25	516-25	5523
37	Ligand-Shell-Directed Assembly and Depolymerization of Patchy Nanoparticles. <i>Angewandte Chemie</i> , 2013 , 125, 1002-1006	3.6	5
36	Recent Advances in the Synthesis and Applications of Multimodal Gold-Iron Nanoparticles. <i>Current Medicinal Chemistry</i> , 2017 , 24, 497-511	4.3	5
35	The van der Waals Interactions of n-Alkanethiol-Covered Surfaces: From Planar to Curved Surfaces. <i>Angewandte Chemie</i> , 2017 , 129, 16753-16757	3.6	4
34	Synthesis and Characterization of Amphiphilic Gold Nanoparticles. <i>Journal of Visualized Experiments</i> , 2019 ,	1.6	4
33	Evolution of the Ligand Shell Morphology during Ligand Exchange Reactions on Gold Nanoparticles. <i>Angewandte Chemie</i> , 2017 , 129, 13706-13710	3.6	4
32	Effect of Composition on the Catalytic Properties of Mixed-Ligand-Coated Gold Nanoparticles. <i>Angewandte Chemie</i> , 2011 , 123, 8046-8051	3.6	4
31	Nature-Inspired Circular-Economy Recycling for Proteins: Proof of Concept. <i>Advanced Materials</i> , 2021 , 33, e2104581	24	4

(2021-2021)

30	Therapeutic approaches against coronaviruses acute respiratory syndrome. <i>Pharmacology Research and Perspectives</i> , 2021 , 9, e00691	3.1	4	
29	Isolation and Characterization of Monodisperse Core-Shell Nanoparticle Fractions. <i>Langmuir</i> , 2015 , 31, 11179-85	4	3	
28	Comparative characterisation of non-monodisperse gold nanoparticle populations by X-ray scattering and electron microscopy. <i>Nanoscale</i> , 2020 , 12, 12007-12013	7.7	3	
27	Supramolecular replication of peptide and DNA patterned arrays. <i>Journal of Materials Chemistry</i> , 2010 , 20, 68-70		3	
26	Non-Toxic Virucidal Macromolecules Show High Efficacy Against Influenza Virus Ex Vivo and In Vivo. <i>Advanced Science</i> , 2021 , 8, 2001012	13.6	3	
25	3D to 2D reorganization of silver-thiol nanostructures, triggered by solvent vapor annealing. <i>Nanoscale</i> , 2018 , 10, 23018-23026	7.7	3	
24	Selective Localization of Hierarchically Assembled Particles to Plasma Membranes of Living Cells. Small Methods, 2019 , 3, 1800408	12.8	2	
23	An Atomistic Look into Bio-inspired Nanoparticles and their Molecular Interactions with Cells. <i>Chimia</i> , 2019 , 73, 78-80	1.3	2	
22	Reproducibility warning: The curious case of polyethylene glycol 6000 and spheroid cell culture. <i>PLoS ONE</i> , 2020 , 15, e0224002	3.7	2	
21	Seeded solution growth of nanoparticles into ordered three-dimensional supracrystals. <i>RSC Advances</i> , 2013 , 3, 10628	3.7	2	
20	Light-induced Dynamics of a Dodecanethiol-capped Gold Nanoparticles Supracrystal Revealed by Ultrafast Small-angle Electron Diffraction 2016 ,		2	
19	Broad-spectrum nanoparticles against bacteriophage infections. <i>Nanoscale</i> , 2021 , 13, 18684-18694	7.7	2	
18	Quantification of surface composition and segregation on AuAg bimetallic nanoparticles by MALDI MS. <i>Nanoscale</i> , 2020 , 12, 22639-22644	7.7	2	
17	Local photo-mechanical stiffness revealed in gold nanoparticles supracrystals by ultrafast small-angle electron diffraction. <i>Structural Dynamics</i> , 2019 , 6, 024304	3.2	1	
16	A simple atomic force microscopy method for the visualization of polar and non-polar parts in thin organic films. <i>Journal of Experimental Nanoscience</i> , 2006 , 1, 63-73	1.9	1	
15	One- and two-photon induced growth of ligand-coated nanoparticles for 2D and 3D metal patterning 2002 , 4809, 62		1	
14	In-situ Investigations on Gold Nanoparticles Stabilization Mechanisms in Biological Environments Containing HSA. <i>Advanced Functional Materials</i> ,2110253	15.6	1	
13	Amphiphilic nanoparticles generate curvature in lipid membranes and shape liposome-liposome interfaces. <i>Nanoscale</i> , 2021 , 13, 16879-16884	7.7	1	

12	Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. Journal of Physical Chemistry Letters, 2021 , 12, 8583-8590	6.4	1	
11	Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning 2002 , 14, 194		1	
10	Site-selective surface enhanced Raman scattering study of ligand exchange reactions on aggregated Ag nanocubes <i>Journal of Colloid and Interface Science</i> , 2022 , 616, 110-120	9.3	1	
9	DNA as a Recyclable Natural Polymer. Advanced Functional Materials,2109538	15.6	Ο	
8	Control and Characterization of the Compactness of Single-Chain Nanoparticles. <i>Macromolecules</i> , 2021 , 54, 11459-11467	5.5	O	
7	Direct observation of photo-mechanical stiffness in alkanethiol-capped gold nanoparticles supracrystals by ultrafast small-angle electron diffraction. <i>EPJ Web of Conferences</i> , 2019 , 205, 04004	0.3		
6	Change of Luminescence Properties of Europium Ions Captured by Mixed-Ligand Silver Nanoparticles. <i>Israel Journal of Chemistry</i> , 2014 , 54, 708-711	3.4		
5	Stem Cells: Nanoscale Topography and Chemistry Affect Embryonic Stem Cell Self-Renewal and Early Differentiation (Adv. Healthcare Mater. 12/2013). <i>Advanced Healthcare Materials</i> , 2013 , 2, 1538-1	5 3 8 ^{.1}		
4	"Rippled" Mixed Monolayer Protected Nanoparticles with Charged Ligands. <i>ACS Symposium Series</i> , 2008 , 55-62	0.4		
3	Top-down and bottom-up nanofabrication for multipurpose applications. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 921, 1			
2	Nature-Inspired Circular-Economy Recycling for Proteins: Proof of Concept (Adv. Mater. 44/2021). <i>Advanced Materials</i> , 2021 , 33, 2170345	24		
1	Cornea Implants: Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants (Adv. Funct. Mater. 41/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870297	15.6		