Francesco R Stellacci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9400584/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Surface Properties on Nanoparticle–Cell Interactions. Small, 2010, 6, 12-21.	10.0	2,252
2	Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Materials, 2008, 7, 588-595.	27.5	1,179
3	Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 2015, 10, 339-354.	11.9	1,013
4	Superwetting nanowire membranes for selective absorption. Nature Nanotechnology, 2008, 3, 332-336.	31.5	999
5	Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature, 2004, 431, 963-966.	27.8	755
6	Divalent Metal Nanoparticles. Science, 2007, 315, 358-361.	12.6	600
7	A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics, 2010, 5, 85-97.	3.4	565
8	Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nature Materials, 2004, 3, 330-336.	27.5	532
9	Identifying champion nanostructures for solar water-splitting. Nature Materials, 2013, 12, 842-849.	27.5	527
10	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	14.6	455
11	Conductivity in organic semiconductors hybridized with the vacuum field. Nature Materials, 2015, 14, 1123-1129.	27.5	433
12	A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 2014, 6, 7052.	5.6	383
13	Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices. Nano Letters, 2004, 4, 1079-1083.	9.1	354
14	Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nature Materials, 2018, 17, 195-203.	27.5	331
15	Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 2020, 15, 618-621.	31.5	269
16	Entropy-Mediated Patterning of Surfactant-Coated Nanoparticles and Surfaces. Physical Review Letters, 2007, 99, 226106.	7.8	240
17	High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles. Chemistry of Materials, 2006, 18, 3297-3301.	6.7	236
18	Effect of Particle Diameter and Surface Composition on the Spontaneous Fusion of Monolayer-Protected Gold Nanoparticles with Lipid Bilayers. Nano Letters, 2013, 13, 4060-4067.	9.1	236

#	Article	IF	CITATIONS
19	Silver Nanoparticles with Broad Multiband Linear Optical Absorption. Angewandte Chemie - International Edition, 2009, 48, 5921-5926.	13.8	235
20	From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells. Chemistry of Materials, 2017, 29, 3490-3498.	6.7	234
21	Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype. American Journal of Human Genetics, 2010, 87, 250-257.	6.2	221
22	The effect of nanometre-scale structure on interfacial energy. Nature Materials, 2009, 8, 837-842.	27.5	215
23	Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nature Materials, 2012, 11, 978-985.	27.5	206
24	Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters. Journal of Physical Chemistry B, 2002, 106, 6853-6863.	2.6	204
25	Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nature Communications, 2011, 2, 335.	12.8	201
26	Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning. Advanced Materials, 2002, 14, 194-198.	21.0	194
27	From Homoligand- to Mixed-Ligand- Monolayer-Protected Metal Nanoparticles:Â A Scanning Tunneling Microscopy Investigation. Journal of the American Chemical Society, 2006, 128, 11135-11149.	13.7	183
28	Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nature Communications, 2014, 5, 4482.	12.8	183
29	Direct mapping of the solid–liquid adhesion energy with subnanometre resolution. Nature Nanotechnology, 2010, 5, 401-405.	31.5	163
30	Chains of Superparamagnetic Nanoparticles. Advanced Materials, 2008, 20, 4294-4299.	21.0	157
31	Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR. Nature Communications, 2012, 3, 1182.	12.8	156
32	Ag44(SR)304â^': a silver–thiolate superatom complex. Nanoscale, 2012, 4, 4269.	5.6	154
33	Ordering Surfaces on the Nanoscale: Implications for Protein Adsorption. Journal of the American Chemical Society, 2011, 133, 1438-1450.	13.7	151
34	Direct Visualization of Single Ions in the Stern Layer of Calcite. Langmuir, 2013, 29, 2207-2216.	3.5	150
35	Size Fractionation of Metal Nanoparticles by Membrane Filtration. Advanced Materials, 2005, 17, 532-535.	21.0	145
36	Photoresponsive Hydrogel Microstructure Fabricated by Two-Photon Initiated Polymerization. Advanced Functional Materials, 2002, 12, 611-614.	14.9	142

#	Article	IF	CITATIONS
37	Hydrophobic Meshes for Oil Spill Recovery Devices. ACS Applied Materials & Interfaces, 2013, 5, 774-781.	8.0	141
38	Stable Ultraconcentrated and Ultradilute Colloids of CsPbX ₃ (X = Cl, Br) Nanocrystals Using Natural Lecithin as a Capping Ligand. Journal of the American Chemical Society, 2019, 141, 19839-19849.	13.7	141
39	Evolution of Nanoparticle Protein Corona across the Blood–Brain Barrier. ACS Nano, 2018, 12, 7292-7300.	14.6	137
40	Effects of Surface Compositional and Structural Heterogeneity on Nanoparticle–Protein Interactions: Different Protein Configurations. ACS Nano, 2014, 8, 5402-5412.	14.6	131
41	Modified cyclodextrins as broad-spectrum antivirals. Science Advances, 2020, 6, eaax9318.	10.3	131
42	Edible sensors for meat and seafood freshness. Sensors and Actuators B: Chemical, 2018, 259, 1108-1112.	7.8	127
43	A High Quantum Yield Diarylethene-Backbone Photochromic Polymer. Advanced Materials, 1999, 11, 292-295.	21.0	119
44	Assembly of Metal Nanoparticles into Nanogaps. Small, 2007, 3, 488-499.	10.0	114
45	Concept of a Molecular Charge Storage Dielectric Layer for Organic Thinâ€Film Memory Transistors. Advanced Materials, 2010, 22, 2525-2528.	21.0	113
46	Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale, 2013, 5, 6928.	5.6	113
47	Low-Voltage p- and n-Type Organic Self-Assembled Monolayer Field Effect Transistors. Nano Letters, 2011, 11, 156-159.	9.1	108
48	The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9886-9891.	7.1	106
49	High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nature Communications, 2017, 8, 14069.	12.8	102
50	Size Limitations for the Formation of Ordered Striped Nanoparticles. Journal of the American Chemical Society, 2008, 130, 798-799.	13.7	100
51	Shape-Controlled Growth of Micrometer-Sized Gold Crystals by a Slow Reduction Method. Small, 2006, 2, 1046-1050.	10.0	99
52	Enhancing Radiotherapy by Lipid Nanocapsule-Mediated Delivery of Amphiphilic Gold Nanoparticles to Intracellular Membranes. ACS Nano, 2014, 8, 8992-9002.	14.6	97
53	Phase Separation on Mixed-Monolayer-Protected Metal Nanoparticles: A Study by Infrared Spectroscopy and Scanning Tunneling Microscopy. Small, 2007, 3, 814-817.	10.0	95
54	Water-soluble amphiphilic gold nanoparticles with structured ligand shells. Chemical Communications, 2008, , 196-198.	4.1	93

#	Article	IF	CITATIONS
55	A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles. Nature Communications, 2016, 7, 13121.	12.8	91
56	Bis(dioxaborine) compounds with large two-photon cross sections, and their use in the photodeposition of silver. Chemical Communications, 2003, , 1490-1491.	4.1	90
57	Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers. ACS Nano, 2013, 7, 932-942.	14.6	89
58	Characterization of Ligand Shell for Mixed-Ligand Coated Gold Nanoparticles. Accounts of Chemical Research, 2017, 50, 1911-1919.	15.6	88
59	Ultrabright Supramolecular Beacons Based on the Self-Assembly of Two-Photon Chromophores on Metal Nanoparticles. Journal of the American Chemical Society, 2003, 125, 328-329.	13.7	87
60	Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nature Communications, 2016, 7, 13520.	12.8	86
61	Chemical sensing with Au and Ag nanoparticles. Chemical Society Reviews, 2021, 50, 1269-1304.	38.1	85
62	Direct Investigation of Intracellular Presence of Gold Nanoparticles <i>via</i> Photothermal Heterodyne Imaging. ACS Nano, 2011, 5, 2587-2592.	14.6	84
63	A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Scientific Reports, 2017, 7, 4636.	3.3	84
64	Lowâ€Voltage Selfâ€Assembled Monolayer Fieldâ€Effect Transistors on Flexible Substrates. Advanced Materials, 2013, 25, 4511-4514.	21.0	78
65	High-Resolution Scanning Tunneling Microscopy Characterization of Mixed Monolayer Protected Gold Nanoparticles. ACS Nano, 2013, 7, 8529-8539.	14.6	76
66	Photoswitchable Flexible and Shape-Persistent Dendrimers:  Comparison of the Interplay between a Photochromic Azobenzene Core and Dendrimer Structure. Journal of the American Chemical Society, 2004, 126, 2181-2185.	13.7	75
67	A scalable synthesis of highly stable and water dispersible Ag44(SR)30 nanoclusters. Journal of Materials Chemistry A, 2013, 1, 10148.	10.3	74
68	Nucleation and Island Growth of Alkanethiolate Ligand Domains on Gold Nanoparticles. ACS Nano, 2012, 6, 629-640.	14.6	72
69	Oligonucleotide Delivery by Cellâ€Penetrating "Striped―Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 12312-12315.	13.8	71
70	Synthesis and Characterization of Janus Gold Nanoparticles. Advanced Materials, 2012, 24, 3857-3863.	21.0	71
71	Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging. Journal of Physical Chemistry C, 2016, 120, 20860-20868.	3.1	69
72	Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomaterials Science, 2019, 7, 113-124.	5.4	67

#	Article	IF	CITATIONS
73	Long-Lived Charge-Separated States in Ligand-Stabilized Silver Clusters. Journal of the American Chemical Society, 2012, 134, 11856-11859.	13.7	64
74	Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. European Biophysics Journal, 2017, 46, 749-771.	2.2	64
75	Amorphous CaCO ₃ : Influence of the Formation Time on Its Degree of Hydration and Stability. Journal of the American Chemical Society, 2018, 140, 14289-14299.	13.7	64
76	Diarylethene-based photochromic rewritable optical memories: on the possibility of reading in the mid-infrared. Chemical Physics Letters, 1999, 302, 563-570.	2.6	63
77	Supramolecular Nanostamping:  Using DNA as Movable Type. Nano Letters, 2005, 5, 1061-1064.	9.1	62
78	Host–guest chemistry with water-soluble gold nanoparticle supraspheres. Nature Nanotechnology, 2017, 12, 170-176.	31.5	62
79	An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nature Nanotechnology, 2021, 16, 918-925.	31.5	61
80	Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine, 2015, 10, 3495-3512.	3.3	55
81	Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering. Nature Communications, 2018, 9, 1343.	12.8	54
82	Unraveling the complexity of amyloid polymorphism using gold nanoparticles and cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6866-6874.	7.1	54
83	Effect of Composition on the Catalytic Properties of Mixedâ€Ligandâ€Coated Gold Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 7900-7905.	13.8	52
84	Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes. Nanoscale, 2015, 7, 11420-11432.	5.6	51
85	High Resolution Printing of DNA Feature on Poly(methyl methacrylate) Substrates Using Supramolecular Nano-Stamping. Journal of the American Chemical Society, 2005, 127, 16774-16775.	13.7	49
86	Amphiphilic amino acids: a key to adsorbing proteins to nanopatterned surfaces?. Chemical Science, 2013, 4, 928-937.	7.4	48
87	Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles. Optics Express, 2008, 16, 5544.	3.4	47
88	Contact angle and adsorption energies of nanoparticles at the air–liquid interface determined by neutron reflectivity and molecular dynamics. Nanoscale, 2015, 7, 5665-5673.	5.6	47
89	Amphiphilic nanoparticle delivery enhances the anticancer efficacy of a TLR7 ligand via local immune activation. Biomaterials, 2019, 190-191, 111-120.	11.4	43
90	Core–Shell Silver Nanoparticles in Endodontic Disinfection Solutions Enable Long-Term Antimicrobial Effect on Oral Biofilms. ACS Applied Materials & Interfaces, 2017, 9, 34762-34772.	8.0	42

#	Article	IF	CITATIONS
91	Microstructured Fibers for the Production of Food. Advanced Materials, 2019, 31, e1807282.	21.0	40
92	Striped nanowires and nanorods from mixed SAMS. Nanoscale, 2011, 3, 3244.	5.6	39
93	Order/Disorder Dynamics in a Dodecanethiol-Capped Gold Nanoparticles Supracrystal by Small-Angle Ultrafast Electron Diffraction. Nano Letters, 2016, 16, 2705-2713.	9.1	39
94	Compartmentalization of Gold Nanocrystals in Polymer Microparticles using Electrohydrodynamic Coâ€Jetting. Macromolecular Rapid Communications, 2010, 31, 176-182.	3.9	38
95	Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles. Proceedings of the United States of America, 2020, 117, 18470-18476.	7.1	38
96	Cyclodextrin Modulated Type I Collagen Selfâ€Assembly to Engineer Biomimetic Cornea Implants. Advanced Functional Materials, 2018, 28, 1804076.	14.9	37
97	A new season. Nature Materials, 2005, 4, 113-114.	27.5	36
98	Near-field excitation and near-field detection of propagating surface plasmon polaritons on Au waveguide structures. Applied Physics Letters, 2009, 94, .	3.3	36
99	Dynamic Cellular Uptake of Mixed-Monolayer Protected Nanoparticles. Biointerphases, 2012, 7, 17.	1.6	36
100	Gold nanoparticles protected by fluorinated ligands for 19F MRI. Chemical Communications, 2013, 49, 8794.	4.1	36
101	Scanning tunneling microscopy and small angle neutron scattering study of mixed monolayer protected gold nanoparticles in organic solvents. Chemical Science, 2014, 5, 1232.	7.4	36
102	Structure–Property Relationships of Amphiphilic Nanoparticles That Penetrate or Fuse Lipid Membranes. Bioconjugate Chemistry, 2018, 29, 1131-1140.	3.6	36
103	Polymeric Micelles Loading Proteins through Concurrent Ion Complexation and pH leavable Covalent Bonding for In Vivo Delivery. Macromolecular Bioscience, 2020, 20, e1900161.	4.1	36
104	Mixed‣igand Nanoparticles as Supramolecular Receptors. Small, 2011, 7, 1961-1966.	10.0	35
105	Ultrastrong routes to new chemistry. Nature Materials, 2012, 11, 272-273.	27.5	35
106	Growth and Dissolution of Calcite in the Presence of Adsorbed Stearic Acid. Langmuir, 2015, 31, 7563-7571.	3.5	34
107	Evolution of the Ligand Shell Morphology during Ligand Exchange Reactions on Gold Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 13521-13525.	13.8	34
108	Ultrafast photoinduced ring-closure dynamics of a diarylethene polymer. Chemical Physics Letters, 2002, 359, 278-282.	2.6	33

#	Article	IF	CITATIONS
109	Twoâ€Photon Excited Fluorescence Enhancement for Ultrasensitive DNA Detection on Largeâ€Area Gold Nanopatterns. Advanced Materials, 2010, 22, 2542-2546.	21.0	33
110	Future Perspectives Towards the Use of Nanomaterials for Smart Food Packaging and Quality Control. Particle and Particle Systems Characterization, 2015, 32, 408-416.	2.3	33
111	Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces. Nature Communications, 2016, 7, 13064.	12.8	33
112	Doping Molecular Wires. Nano Letters, 2009, 9, 2559-2564.	9.1	32
113	Nanoscale Topography and Chemistry Affect Embryonic Stem Cell Selfâ€Renewal and Early Differentiation. Advanced Healthcare Materials, 2013, 2, 1644-1650.	7.6	32
114	Quantitative Analysis of Scanning Tunneling Microscopy Images of Mixed-Ligand-Functionalized Nanoparticles. Langmuir, 2013, 29, 13723-13734.	3.5	32
115	Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. Scientific Reports, 2020, 10, 9052.	3.3	32
116	Relationship Between Structure and Solubility of Thiol-Protected Silver Nanoparticles and Assemblies. Topics in Catalysis, 2008, 47, 32-41.	2.8	31
117	Artificial Surfaceâ€Modified Si ₃ N ₄ Nanopores for Single Surfaceâ€Modified Gold Nanoparticle Scanning. Small, 2011, 7, 455-459.	10.0	31
118	Frontiers in Nanoparticle Research: Toward Greater Complexity of Structure and Function of Nanomaterials. Advanced Materials, 2008, 20, 4221-4222.	21.0	30
119	Response to "Stripy Nanoparticles Revisited― Small, 2012, 8, 3720-3726.	10.0	30
120	In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO ₂ Surface of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 10834-10842.	8.0	30
121	Droplets Out of Equilibrium. Science, 2013, 341, 243-244.	12.6	29
122	On the effect of ligand shell heterogeneity on nanoparticle/protein binding thermodynamics. Colloids and Surfaces B: Biointerfaces, 2019, 174, 367-373.	5.0	29
123	Thermodynamic Study of the Reactivity of the Two Topological Point Defects Present in Mixed Selfâ€Assembled Monolayers on Gold Nanoparticles. Advanced Materials, 2008, 20, 4243-4247.	21.0	28
124	Colloidal Stability of Self-Assembled Monolayer-Coated Gold Nanoparticles: The Effects of Surface Compositional and Structural Heterogeneity. Langmuir, 2013, 29, 11560-11566.	3.5	28
125	Fabrication of biomolecular devices via supramolecular contact-based approaches. Chemical Society Reviews, 2010, 39, 30-37.	38.1	27
126	Modular soft robotic microdevices for dexterous biomanipulation. Lab on A Chip, 2019, 19, 778-788.	6.0	27

#	Article	IF	CITATIONS
127	Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discovery Today, 2021, 26, 122-137.	6.4	27
128	Chemically directed assembly of monolayer protected gold nanoparticles on lithographically generated patterns. Journal of Materials Chemistry, 2006, 16, 962.	6.7	26
129	Exploiting Substrate Stress To Modify Nanoscale SAM Patterns. Journal of the American Chemical Society, 2009, 131, 16377-16379.	13.7	26
130	Advances in Janus Nanoparticles. Chimia, 2013, 67, 811.	0.6	26
131	Highâ€Surfaceâ€Area Porous Platinum Electrodes for Enhanced Charge Transfer. Advanced Energy Materials, 2014, 4, 1400510.	19.5	26
132	Ubiquitous aluminium contamination in water and amyloid hybrid membranes as a sustainable possible solution. Chemical Communications, 2019, 55, 11143-11146.	4.1	26
133	FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice. Cells, 2019, 8, 279.	4.1	26
134	Generation of Various Complex Patterned Structures From a Single Ellipsoidal Dot Prepattern by Capillary Force Lithography. Advanced Materials, 2007, 19, 4392-4398.	21.0	25
135	A Generic Approach Towards Nanostructured Surfaces Based on Supramolecular Nanostamping on Reactive Polymer Coatings. Advanced Materials, 2007, 19, 4333-4337.	21.0	25
136	Effect of Ligand Shell Structure on the Interaction between Monolayer-Protected Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 6279-6284.	3.1	24
137	Electrophysiological Study of Single Gold Nanoparticle/ <i>î±</i> â€Hemolysin Complex Formation: A Nanotool to Slow Down ssDNA Through the <i>î±</i> â€Hemolysin Nanopore. Small, 2009, 5, 1273-1278.	10.0	24
138	Carbeneâ€Functionalized Singleâ€Walled Carbon Nanotubes and Their Electrical Properties. Small, 2011, 7, 1257-1263.	10.0	24
139	Evolution of Langmuir Film of Nanoparticles Through Successive Compression Cycles. Small, 2011, 7, 2526-2532.	10.0	24
140	Sensing Single Mixed-Monolayer Protected Gold Nanoparticles by the α-Hemolysin Nanopore. Analytical Chemistry, 2013, 85, 10149-10158.	6.5	23
141	Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. Nanoscale, 2020, 12, 19746-19759.	5.6	23
142	Broad‣pectrum Antiviral Agents Based on Multivalent Inhibitors of Viral Infectivity. Advanced Healthcare Materials, 2021, 10, e2001433.	7.6	23
143	Application of Supramolecular Nanostamping to the Replication of DNA Nanoarrays. Nano Letters, 2007, 7, 3493-3498.	9.1	22
144	Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution. ACS Nano, 2019, 13, 8749-8759.	14.6	22

#	Article	IF	CITATIONS
145	Optical limiting with complex plasmonic nanoparticles. Journal of Optics (United Kingdom), 2010, 12, 065001.	2.2	21
146	Two-Dimensional Nanoparticle Supracrystals: A Model System for Two-Dimensional Melting. Nano Letters, 2016, 16, 1352-1358.	9.1	21
147	Erythrocyte Incubation as a Method for Free-Dye Presence Determination in Fluorescently Labeled Nanoparticles. Molecular Pharmaceutics, 2013, 10, 875-882.	4.6	20
148	Response to "Critical Assessment of the Evidence for Striped Nanoparticles― PLoS ONE, 2015, 10, e0135594.	2.5	20
149	Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent. Bioconjugate Chemistry, 2017, 28, 161-170.	3.6	20
150	New approach for time-resolved and dynamic investigations on nanoparticles agglomeration. Nano Research, 2020, 13, 2847-2856.	10.4	20
151	Nanoparticle-Induced Disorder at Complex Liquid–Liquid Interfaces: Effects of Curvature and Compositional Synergy on Functional Surfaces. ACS Nano, 2021, 15, 14285-14294.	14.6	20
152	Morphology Control in Self-Assembled Monolayers Written by Dip Pen Nanolithography. Langmuir, 2004, 20, 4795-4798.	3.5	19
153	Towards Industrial-Scale Molecular Nanolithography. Advanced Functional Materials, 2006, 16, 15-16.	14.9	19
154	SARS-CoV-2 Inhibition by Sulfonated Compounds. Microorganisms, 2020, 8, 1894.	3.6	19
155	Fluorinated and Charged Hydrogenated Alkanethiolates Grafted on Gold: Expanding the Diversity of Mixed-Monolayer Nanoparticles for Biological Applications. Bioconjugate Chemistry, 2017, 28, 43-52.	3.6	17
156	Phase behaviour and applications of a binary liquid mixture of methanol and a thermotropic liquid crystal. Soft Matter, 2018, 14, 4615-4620.	2.7	17
157	Ligandâ€Shellâ€Directed Assembly and Depolymerization of Patchy Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 968-972.	13.8	16
158	Freestanding Ultrathin Nanoparticle Membranes Assembled at Transient Liquid–Liquid Interfaces. Advanced Materials Interfaces, 2016, 3, 1600191.	3.7	16
159	Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers. Nanoscale, 2018, 10, 23027-23036.	5.6	16
160	Mass spectrometry and Monte Carlo method mapping of nanoparticle ligand shell morphology. Nature Communications, 2018, 9, 4478.	12.8	16
161	Nonâ€Toxic Virucidal Macromolecules Show High Efficacy Against Influenza Virus Ex Vivo and In Vivo. Advanced Science, 2021, 8, 2001012.	11.2	16
162	Statistical Analysis of Scanning Tunneling Microscopy Images of 'Striped' Mixed Monolayer Protected Gold Nanoparticles. Journal of Scanning Probe Microscopy, 2009, 4, 24-35.	0.0	16

#	Article	IF	CITATIONS
163	Polymerâ€Protected Subâ€2â€nmâ€Nanogap Fabrication for Biological Sensing in Nearâ€Physiological Conditions. Small, 2009, 5, 2797-2801.	10.0	15
164	New mixed ligand coated platinum nanoparticles for heterogeneous catalytic applications. Catalysis Today, 2012, 198, 77-84.	4.4	15
165	Solvent mediated assembly of nanoparticles confined in mesoporous alumina. Physical Review B, 2006, 73, .	3.2	14
166	Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals. Chemical Communications, 2012, 48, 9765.	4.1	14
167	Comparative STM studies of mixed ligand monolayers on gold nanoparticles in air and in 1-phenyloctane. Chemical Communications, 2014, 50, 10456-10459.	4.1	14
168	Sulfonated Nanomaterials with Broad-Spectrum Antiviral Activity Extending beyond Heparan Sulfate-Dependent Viruses. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	14
169	Natureâ€Inspired Circularâ€Economy Recycling for Proteins: Proof of Concept. Advanced Materials, 2021, 33, e2104581.	21.0	14
170	Cross beam lithography (FIB+EBL) and dip pen nanolithography for nanoparticle conductivity measurements. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2806.	1.6	13
171	Diameter Effect on the Sidewall Functionalization of Singleâ€Walled Carbon Nanotubes by Addition of Dichlorocarbene. Advanced Functional Materials, 2012, 22, 5216-5223.	14.9	13
172	An integrated system for large scale scanning of nuclear emulsions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 703, 204-212.	1.6	13
173	A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces. Europhysics Letters, 2017, 119, 66001.	2.0	13
174	Broad-spectrum nanoparticles against bacteriophage infections. Nanoscale, 2021, 13, 18684-18694.	5.6	13
175	Amphiphilic nanoparticles generate curvature in lipid membranes and shape liposome–liposome interfaces. Nanoscale, 2021, 13, 16879-16884.	5.6	13
176	The van der Waals Interactions of <i>n</i> â€Alkanethiolâ€Covered Surfaces: From Planar to Curved Surfaces. Angewandte Chemie - International Edition, 2017, 56, 16526-16530.	13.8	12
177	Multidimensional Characterization of Mixed Ligand Nanoparticles Using Small Angle Neutron Scattering. Chemistry of Materials, 2019, 31, 6750-6758.	6.7	12
178	Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. Journal of Physical Chemistry Letters, 2021, 12, 8583-8590.	4.6	12
179	Stamping with high information density. Journal of Materials Chemistry, 2006, 16, 2868.	6.7	11
180	Contact Printing Beyond Surface Roughness: Liquid Supramolecular Nanostamping. Advanced Materials, 2007, 19, 4338-4342.	21.0	11

#	Article	IF	CITATIONS
181	Self-Assembled Monolayer of Short Carboxyl-Terminated Molecules Investigated with ex Situ Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2008, 112, 7431-7435.	3.1	11
182	A silica-based magnetic platform decorated with mixed ligand gold nanoparticles: a recyclable catalyst for esterification reactions. Chemical Communications, 2016, 52, 5573-5576.	4.1	11
183	Control and Characterization of the Compactness of Single-Chain Nanoparticles. Macromolecules, 2021, 54, 11459-11467.	4.8	11
184	Parallel fabrication of polymer-protected nanogaps. Nanotechnology, 2010, 21, 385303.	2.6	10
185	pH-Mediated molecular differentiation for fluorimetric quantification of chemotherapeutic drugs in human plasma. Chemical Communications, 2018, 54, 1485-1488.	4.1	10
186	Novel Sensing Strategies Based on Monolayer Protected Gold Nanoparticles for the Detection of Metal Ions and Small Molecules. Chemical Record, 2018, 18, 819-828.	5.8	10
187	Distribution of superparamagnetic Au/Fe nanoparticles in an isolated guinea pig brain with an intact blood brain barrier. Nanoscale, 2018, 10, 22420-22428.	5.6	10
188	Comparative characterisation of non-monodisperse gold nanoparticle populations by X-ray scattering and electron microscopy. Nanoscale, 2020, 12, 12007-12013.	5.6	10
189	The Clustering of mApoE Anti-Amyloidogenic Peptide on Nanoparticle Surface Does Not Alter Its Performance in Controlling Beta-Amyloid Aggregation. International Journal of Molecular Sciences, 2020, 21, 1066.	4.1	10
190	From a photochromic diarylethene monomer to a dopable photochromic polymer: optical properties. Synthetic Metals, 1999, 102, 979-980.	3.9	9
191	Ultra-fast and scalable sidewall functionalisation of single-walled carbon nanotubes with carboxylic acid. Chemical Communications, 2008, , 2788.	4.1	9
192	Ion-bridges and lipids drive aggregation of same-charge nanoparticles on lipid membranes. Nanoscale, 2022, 14, 6912-6921.	5.6	9
193	Potent Virustatic Polymer–Lipid Nanomimics Block Viral Entry and Inhibit Malaria Parasites In Vivo. ACS Central Science, 2022, 8, 1238-1257.	11.3	9
194	Self-aligned nanolithography by selective polymer dissolution. Nanoscale, 2010, 2, 2302.	5.6	8
195	Determination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25516-25523.	7.1	8
196	Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning. Advanced Materials, 2002, 14, 194.	21.0	8
197	Inâ€situ Investigations on Gold Nanoparticles Stabilization Mechanisms in Biological Environments Containing HSA. Advanced Functional Materials, 2022, 32, 2110253.	14.9	8
198	Reversible aggregation of porphyrins in the solid stateâ€. Journal of Experimental Nanoscience, 2008, 3, 53-60.	2.4	7

#	Article	IF	CITATIONS
199	Co-precipitation of oppositely charged nanoparticles: the case of mixed ligand nanoparticles. Journal Physics D: Applied Physics, 2015, 48, 434001.	2.8	7
200	Synthesis and characterization of mixed ligand chiral nanoclusters. Dalton Transactions, 2016, 45, 11297-11300.	3.3	7
201	Evolution of the Ligand Shell Morphology during Ligand Exchange Reactions on Gold Nanoparticles. Angewandte Chemie, 2017, 129, 13706-13710.	2.0	7
202	Interferon Lambda Delays the Emergence of Influenza Virus Resistance to Oseltamivir. Microorganisms, 2021, 9, 1196.	3.6	7
203	Therapeutic approaches against coronaviruses acute respiratory syndrome. Pharmacology Research and Perspectives, 2021, 9, e00691.	2.4	7
204	Capturing a DNA duplex under near-physiological conditions. Applied Physics Letters, 2010, 97, 163702.	3.3	6
205	Recent Advances in the Synthesis and Applications of Multimodal Gold-Iron Nanoparticles. Current Medicinal Chemistry, 2017, 24, 497-511.	2.4	6
206	Polyanionic Amphiphilic Dendritic Polyglycerols as Broad-Spectrum Viral Inhibitors with a Virucidal Mechanism. Biomacromolecules, 2022, 23, 983-991.	5.4	6
207	Synthesis and Characterization of Amphiphilic Gold Nanoparticles. Journal of Visualized Experiments, 2019, , .	0.3	5
208	Site-selective surface enhanced Raman scattering study of ligand exchange reactions on aggregated Ag nanocubes. Journal of Colloid and Interface Science, 2022, 616, 110-120.	9.4	5
209	Isolation and Characterization of Monodisperse Core–Shell Nanoparticle Fractions. Langmuir, 2015, 31, 11179-11185.	3.5	4
210	The van der Waals Interactions of <i>n</i> â€Alkanethiolâ€Covered Surfaces: From Planar to Curved Surfaces. Angewandte Chemie, 2017, 129, 16753-16757.	2.0	4
211	An Atomistic Look into Bio-inspired Nanoparticles and their Molecular Interactions with Cells. Chimia, 2019, 73, 78.	0.6	4
212	Reproducibility warning: The curious case of polyethylene glycol 6000 and spheroid cell culture. PLoS ONE, 2020, 15, e0224002.	2.5	4
213	Supramolecular replication of peptide and DNA patterned arrays. Journal of Materials Chemistry, 2010, 20, 68-70.	6.7	3
214	Correction for Centrone et al., The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6241-6241.	7.1	3
215	3D to 2D reorganization of silver–thiol nanostructures, triggered by solvent vapor annealing. Nanoscale, 2018, 10, 23018-23026.	5.6	3
216	Quantification of surface composition and segregation on AuAg bimetallic nanoparticles by MALDI MS. Nanoscale, 2020, 12, 22639-22644.	5.6	3

#	Article	IF	CITATIONS
217	Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions. Materials Horizons, 2021, , .	12.2	3
218	DNA as a Recyclable Natural Polymer. Advanced Functional Materials, 2022, 32, .	14.9	3
219	Experimental Method to Distinguish between a Solution and a Suspension. Advanced Materials Interfaces, 2022, 9, .	3.7	3
220	A simple atomic force microscopy method for the visualization of polar and non-polar parts in thin organic films. Journal of Experimental Nanoscience, 2006, 1, 63-73.	2.4	2
221	Seeded solution growth of nanoparticles into ordered three-dimensional supracrystals. RSC Advances, 2013, 3, 10628.	3.6	2
222	Selective Localization of Hierarchically Assembled Particles to Plasma Membranes of Living Cells. Small Methods, 2019, 3, 1800408.	8.6	2
223	Light-induced Dynamics of a Dodecanethiol-capped Gold Nanoparticles Supracrystal Revealed by Ultrafast Small-angle Electron Diffraction. , 2016, , .		2
224	One- and two-photon induced growth of ligand-coated nanoparticles for 2D and 3D metal patterning. , 2002, 4809, 62.		1
225	Pleated crystals. Nature, 2010, 468, 906-907.	27.8	1
226	Cornea Implants: Cyclodextrin Modulated Type I Collagen Selfâ€Assembly to Engineer Biomimetic Cornea Implants (Adv. Funct. Mater. 41/2018). Advanced Functional Materials, 2018, 28, 1870297.	14.9	1
227	Local photo-mechanical stiffness revealed in gold nanoparticles supracrystals by ultrafast small-angle electron diffraction. Structural Dynamics, 2019, 6, 024304.	2.3	1
228	Celebrating 10 years of Nanoscale. Nanoscale, 2019, 11, 18922-18922.	5.6	1
229	Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning. , 2002, 14, 194.		1
230	Two-photon fluorescent labels with enhanced sensitivity for biological imaging. , 0, , .		0
231	Two-photon 3D lithography: materials and applications. , 0, , .		0
232	Top-down and bottom-up nanofabrication for multipurpose applications Materials Research Society Symposia Proceedings, 2006, 921, 1.	0.1	0
233	Chains of divalent gold nanoparticles. Proceedings of SPIE, 2007, , .	0.8	0
234	"Rippled" Mixed Monolayer Protected Nanoparticles with Charged Ligands. ACS Symposium Series, 2008, , 55-62.	0.5	0

#	Article	IF	CITATIONS
235	Nanoscale—a new journal. Nanoscale, 2009, 1, 13.	5.6	ο
236	Direct Mapping Of Surface-bound Liquid With Sub-nanometer Resolution. Biophysical Journal, 2009, 96, 399a.	0.5	0
237	Making a successful start. Nanoscale, 2010, 2, 13-17.	5.6	0
238	In-situ investigation of adsorption of dye and coadsorbates on TiO ₂ films using QCM-D, fluorescence and AFM techniques. Proceedings of SPIE, 2013, , .	0.8	0
239	Stem Cells: Nanoscale Topography and Chemistry Affect Embryonic Stem Cell Selfâ€Renewal and Early Differentiation (Adv. Healthcare Mater. 12/2013). Advanced Healthcare Materials, 2013, 2, 1538-1538.	7.6	Ο
240	Change of Luminescence Properties of Europium Ions Captured by Mixed‣igand Silver Nanoparticles. Israel Journal of Chemistry, 2014, 54, 708-711.	2.3	0
241	Direct observation of photo-mechanical stiffness in alkanethiol-capped gold nanoparticles supracrystals by ultrafast small-angle electron diffraction. EPJ Web of Conferences, 2019, 205, 04004.	0.3	0
242	Natureâ€Inspired Circularâ€Economy Recycling for Proteins: Proof of Concept (Adv. Mater. 44/2021). Advanced Materials, 2021, 33, 2170345.	21.0	0