Steven Cramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9400548/publications.pdf

Version: 2024-02-01

172207 189595 2,976 98 29 50 h-index citations g-index papers 99 99 99 1583 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A framework for calculating orthogonal selectivities in multimodal systems directly from cell culture fluid. Biotechnology and Bioengineering, 2022, 119, 299-314.	1.7	2
2	Systematic workflow for studying domain contributions of bispecific antibodies to selectivity in multimodal chromatography. Biotechnology and Bioengineering, 2022, 119, 211-225.	1.7	5
3	Understanding the effects of system differences for parameter estimation and scale-up of high throughput chromatographic data. Journal of Chromatography A, 2022, 1661, 462696.	1.8	7
4	Adaptive immune responses in vaccinated patients with symptomatic SARS-CoV-2 Alpha infection. JCI Insight, 2022, 7, .	2.3	12
5	Towards continuous mAb purification: Clearance of host cell proteins from CHO cell culture harvests via "flowâ€through affinity chromatography―using peptideâ€based adsorbents. Biotechnology and Bioengineering, 2022, 119, 1873-1889.	1.7	14
6	Development of QSAR models for <i>in silico</i> screening of antibody solubility. MAbs, 2022, 14, 2062807.	2.6	13
7	Evaluation of lentiviral vector stability and development of ion exchange purification processes. Biotechnology Progress, 2022, 38, .	1.3	5
8	Identification of preferred multimodal ligandâ€binding regions on IgG1 F _C using nuclear magnetic resonance and molecular dynamics simulations. Biotechnology and Bioengineering, 2021, 118, 809-822.	1.7	12
9	Development of a platform process for the production and purification of singleâ€domain antibodies. Biotechnology and Bioengineering, 2021, 118, 3348-3358.	1.7	8
10	Rapid optimization of processes for the integrated purification of biopharmaceuticals. Biotechnology and Bioengineering, 2021, 118, 3435-3446.	1.7	4
11	Behavior of Water Near Multimodal Chromatography Ligands and Its Consequences for Modulating Protein–Ligand Interactions. Journal of Physical Chemistry B, 2021, 125, 6112-6120.	1.2	2
12	Advancing a rapid, high throughput screening platform for optimization of lentivirus production. Biotechnology Journal, 2021, 16, 2000621.	1.8	1
13	Affinity precipitation of monoclonal antibodies using ELP-Z in the elution without resolubilization mode. Journal of Biotechnology, 2021, 338, 1-4.	1.9	3
14	Evaluation of guanidine-based multimodal anion exchangers for protein selectivity and orthogonality. Journal of Chromatography A, 2021, 1653, 462398.	1.8	6
15	Probing IgG1 F _C –Multimodal Nanoparticle Interactions: A Combined Nuclear Magnetic Resonance and Molecular Dynamics Simulations Approach. Langmuir, 2021, 37, 12188-12203.	1.6	6
16	Purification of proteins using peptide-ELP based affinity precipitation. Journal of Biotechnology, 2020, 309, 59-67.	1.9	23
17	The effect of pH on antibody retention in multimodal cation exchange chromatographic systems. Journal of Chromatography A, 2020, 1617, 460838.	1.8	18
18	The Role of Ligand–Ligand Interactions in Multimodal Ligand Conformational Equilibria and Surface Pattern Formation. Langmuir, 2020, 36, 9054-9063.	1.6	4

#	Article	IF	Citations
19	A thermodynamic evaluation of antibody-surface interactions in multimodal cation exchange chromatography. Journal of Chromatography A, 2020, 1628, 461479.	1.8	7
20	Quantifying orthogonality and separability: A method for optimizing resin selection and design. Journal of Chromatography A, 2020, 1628, 461429.	1.8	6
21	Singleâ€step purification of a small nonâ€mAb biologic by peptideâ€ELPâ€based affinity precipitation. Biotechnology and Bioengineering, 2020, 117, 3775-3784.	1.7	4
22	Mechanism of sequenceâ€based separation of singleâ€stranded DNA in capillary zone electrophoresis. Electrophoresis, 2020, 41, 705-713.	1.3	2
23	Highland games: A benchmarking exercise in predicting biophysical and drug properties of monoclonal antibodies from amino acid sequences. Biotechnology and Bioengineering, 2020, 117, 2100-2115.	1.7	9
24	Development of phage biopanning strategies to identify affinity peptide ligands for kappa light chain Fab fragments. Biotechnology Progress, 2019, 35, e2884.	1.3	12
25	Formation of Ligand Clusters on Multimodal Chromatographic Surfaces. Langmuir, 2019, 35, 16770-16779.	1.6	9
26	Conformational Equilibria of Multimodal Chromatography Ligands in Water and Bound to Protein Surfaces. Journal of Physical Chemistry B, 2019, 123, 4833-4843.	1.2	6
27	Mechanistic modeling based process development for monoclonal antibody monomer-aggregate separations in multimodal cation exchange chromatography. Journal of Chromatography A, 2019, 1602, 317-325.	1.8	18
28	A combined screening and in silico strategy for the rapid design of integrated downstream processes for process and productâ€related impurity removal. Biotechnology and Bioengineering, 2019, 116, 2178-2190.	1.7	15
29	Implementation of an experimental and computational tool set to study proteinâ€mAb interactions. Biotechnology Progress, 2019, 35, e2825.	1.3	5
30	Investigation of cathepsin Dâ \in "mAb interactions using a combined experimental and computational tool set. Biotechnology and Bioengineering, 2019, 116, 1684-1697.	1.7	11
31	Design of peptide ligands for affinity purification of human growth hormone. Journal of Chemical Technology and Biotechnology, 2019, 94, 2345-2354.	1.6	7
32	An impurity characterization based approach for the rapid development of integrated downstream purification processes. Biotechnology and Bioengineering, 2018, 115, 2048-2060.	1.7	15
33	Protein Binding Kinetics in Multimodal Systems: Implications for Protein Separations. Analytical Chemistry, 2018, 90, 2609-2617.	3.2	5
34	On-demand manufacturing of clinical-quality biopharmaceuticals. Nature Biotechnology, 2018, 36, 988-995.	9.4	75
35	Domain contributions to antibody retention in multimodal chromatography systems. Journal of Chromatography A, 2018, 1563, 89-98.	1.8	32
36	Investigating the impact of aromatic ring substitutions on selectivity for a multimodal anion exchange prototype library. Journal of Chromatography A, 2018, 1569, 101-109.	1.8	16

3

#	Article	IF	CITATIONS
37	Effect of guanidine and arginine on protein–ligand interactions in multimodal cationâ€exchange chromatography. Biotechnology Progress, 2017, 33, 435-447.	1.3	8
38	QSAR models for prediction of chromatographic behavior of homologous Fab variants. Biotechnology and Bioengineering, 2017, 114, 1231-1240.	1.7	31
39	Single Molecule Force Spectroscopy and Molecular Dynamics Simulations as a Combined Platform for Probing Protein Face-Specific Binding. Langmuir, 2017, 33, 10851-10860.	1.6	24
40	Understanding operational system differences for transfer of miniaturized chromatography column data using simulations. Journal of Chromatography A, 2017, 1515, 154-163.	1.8	19
41	A molecular modeling based method to predict elution behavior and binding patches of proteins in multimodal chromatography. Journal of Chromatography A, 2017, 1511, 45-58.	1.8	18
42	Investigation of protein selectivity in multimodal chromatography using <i>in silico</i> designed Fab fragment variants. Biotechnology and Bioengineering, 2015, 112, 2305-2315.	1.7	38
43	The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces. Journal of Chromatography A, 2015, 1412, 33-42.	1.8	51
44	Interactions of Multimodal Ligands with Proteins: Insights into Selectivity Using Molecular Dynamics Simulations. Langmuir, 2015, 31, 7512-7523.	1.6	21
45	Use of MiniColumns for linear isotherm parameter estimation and prediction of benchtop column performance. Journal of Chromatography A, 2015, 1418, 94-102.	1.8	41
46	Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands. Journal of Chromatography A, 2015, 1407, 58-68.	1.8	39
47	Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries. Journal of Chromatography A, 2015, 1426, 102-109.	1.8	22
48	Modelâ€based process development for the purification of a modified human growth hormone using multimodal chromatography. Biotechnology Progress, 2014, 30, 1057-1064.	1.3	24
49	Application of a Spherical Harmonics Expansion Approach for Calculating Ligand Density Distributions around Proteins. Journal of Physical Chemistry B, 2014, 118, 13066-13076.	1.2	18
50	Development of an ELP-Z based mAb affinity precipitation process using scaled-down filtration techniques. Journal of Biotechnology, 2014, 192, 11-19.	1.9	13
51	Investigation into the Molecular and Thermodynamic Basis of Protein Interactions in Multimodal Chromatography Using Functionalized Nanoparticles. Langmuir, 2014, 30, 13205-13216.	1.6	39
52	Affinity precipitation of a monoclonal antibody from an industrial harvest feedstock using an ELPâ€Z stimuli responsive biopolymer. Biotechnology and Bioengineering, 2014, 111, 1595-1603.	1.7	32
53	Design of peptide affinity ligands for S-protein: a comparison of combinatorial and de novo design strategies. Molecular Diversity, 2013, 17, 357-369.	2.1	10
54	Parameters Governing the Formation of Photopolymerized Silica Sol–Gel Monoliths in PDMS Microfluidic Chips. Chromatographia, 2013, 76, 993-1002.	0.7	4

#	Article	IF	Citations
55	Methods development in multimodal chromatography with mobile phase modifiers using the steric mass action model. Journal of Chromatography A, 2013, 1318, 149-155.	1.8	30
56	ELP-z and ELP-zz capturing scaffolds for the purification of immunoglobulins by affinity precipitation. Journal of Biotechnology, 2013, 163, 10-16.	1.9	42
57	Highâ€throughput screening for the development of a monoclonal antibody affinity precipitation step using ELPâ€z stimuli responsive biopolymers. Biotechnology and Bioengineering, 2013, 110, 2664-2676.	1.7	23
58	Effects of Urea on Selectivity and Protein–Ligand Interactions in Multimodal Cation Exchange Chromatography. Langmuir, 2013, 29, 158-167.	1.6	19
59	Probing multimodal ligand binding regions on ubiquitin using nuclear magnetic resonance, chromatography, and molecular dynamics simulations. Journal of Chromatography A, 2012, 1229, 113-120.	1.8	27
60	Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnology and Bioengineering, 2012, 109, 176-186.	1.7	51
61	Molecular Simulations of Multimodal Ligand–Protein Binding: Elucidation of Binding Sites and Correlation with Experiments. Journal of Physical Chemistry B, 2011, 115, 13320-13327.	1.2	41
62	Proteinâ-'Surface Interaction Maps for Ion-Exchange Chromatography. Langmuir, 2011, 27, 3561-3568.	1.6	21
63	Downstream bioprocessing: recent advances and future promise. Current Opinion in Chemical Engineering, 2011, 1, 27-37.	3.8	122
64	Evaluation of selectivity in multimodal anion exchange systems: A priori prediction of protein retention and examination of mobile phase modifier effects. Journal of Chromatography A, 2011, 1218, 7813-7820.	1.8	57
65	Selective displacement chromatography in multimodal cation exchange systems. Journal of Chromatography A, 2011, 1218, 9250-9259.	1.8	7
66	Alkyl Based Selective Displacers for Protein Purification in Ion Exchange Chromatography. Chromatographia, 2010, 72, 1025-1034.	0.7	0
67	Investigation of protein binding affinity in multimodal chromatographic systems using a homologous protein library. Journal of Chromatography A, 2010, 1217, 191-198.	1.8	48
68	Ion Exchange Chromatographic Behavior of a Homologous Cytochrome C Variant Library Obtained by Controlled Succinylation. Separation Science and Technology, 2010, 45, 2144-2152.	1.3	7
69	Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16811-16816.	3.3	66
70	Utilization of Lysozyme Charge Ladders to Examine the Effects of Protein Surface Charge Distribution on Binding Affinity in Ion Exchange Systems. Langmuir, 2010, 26, 759-768.	1.6	27
71	Aligned Carbon Nanotube Stationary Phases for Electrochromatographic Chip Separations. Chromatographia, 2009, 69, 473-480.	0.7	72
72	Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems. Journal of Chromatography A, 2008, 1177, 207-214.	1.8	38

#	Article	IF	Citations
73	Synthesis and characterization of particle loaded sol–gel composite material for microfluidic chip system. Journal of Sol-Gel Science and Technology, 2008, 45, 133-141.	1.1	3
74	High Throughput Determination and QSER Modeling of Displacer DCâ€50 Values for Ion Exchange Systems. Separation Science and Technology, 2006, 41, 3079-3107.	1.3	8
75	Protein Interactions in Hydrophobic Charge Induction Chromatography (HCIC). Biotechnology Progress, 2005, 21, 498-508.	1.3	80
76	Antibody variable region interactions with Protein A: Implications for the development of generic purification processes. Biotechnology and Bioengineering, 2005, 92, 665-673.	1.7	139
77	Prediction of Protein Retention Times in Anion-Exchange Chromatography Systems Using Support Vector Regression. ACS Symposium Series, 2005, , 111-125.	0.5	1
78	Investigation of Mobile Phase Salt Type Effects on Protein Retention and Selectivity in Cation-Exchange Systems Using Quantitative Structure Retention Relationship Models. Langmuir, 2003, 19, 8443-8454.	1.6	38
79	Predicting Column Performance in Displacement Chromatography from High Throughput Screening Batch Experiments. Separation Science and Technology, 2003, 38, 1499-1517.	1.3	20
80	Salting-In and Salting-Out of Hydrophobic Solutes in Aqueous Salt Solutions. Journal of Physical Chemistry B, 2001, 105, 6380-6386.	1.2	163
81	Purification of Recombinant Brain Derived Neurotrophic Factor Using Reversed Phase Displacement Chromatography. Biotechnology Progress, 2001, 17, 897-906.	1.3	13
82	Purification of Oligonucleotides by High Affinity, Low Molecular Weight Displacers. Biotechnology Progress, 2000, 16, 1064-1070.	1.3	23
83	A Methodology for the Characterization of Ion-Exchange Resins. Separation Science and Technology, 2000, 35, 1719-1742.	1.3	42
84	Modeling shock layers in ion-exchange displacement chromatography. AICHE Journal, 1999, 45, 27-37.	1.8	26
85	EVALUATION OF LOT-TO-LOT CONSISTENCY IN ION EXCHANGE CHROMATOGRAPHY. Journal of Liquid Chromatography and Related Technologies, 1999, 22, 1733-1758.	0.5	5
86	Displacement Chromatography of Proteins using Low Molecular Weight Anionic Displacers. Adsorption, 1998, 4, 373-381.	1.4	9
87	Purification of an Antigenic Vaccine Protein by Selective Displacement Chromatography. Biotechnology Progress, 1998, 14, 92-101.	1.3	32
88	IMAC: Nonlinear elution chromatography of proteins. , 1997, 54, 373-390.		9
89	Selective displacement chromatography of proteins., 1997, 56, 119-129.		44
90	Immobilized Metal Affinity Chromatography: Displacer Characteristics of Traditional Mobile Phase Modifiers. Biotechnology Progress, 1996, 12, 84-91.	1.3	15

#	Article	IF	CITATION
91	Transient profiles in ion-exchange displacement chromatography. AICHE Journal, 1995, 41, 1676-1686.	1.8	25
92	Optimization of step gradient separations: Consideration of nonlinear adsorption. Biotechnology and Bioengineering, 1995, 47, 355-372.	1.7	52
93	Protected amino acids as novel low-molecular-weight displacers in cation-exchange displacement chromatography. Biotechnology and Bioengineering, 1995, 48, 452-460.	1.7	54
94	Kinetic resolution of racemic glycidyl butyrate using a multiphase membrane enzyme reactor: Experiments and model verification. Biotechnology and Bioengineering, 1993, 41, 979-990.	1.7	47
95	Ion-Exchange Displacement Chromatography of Proteins. ACS Symposium Series, 1993, , 27-42.	0.5	2
96	Steric mass-action ion exchange: Displacement profiles and induced salt gradients. AICHE Journal, 1992, 38, 1969-1978.	1.8	495
97	Recent Advances in the Theory and Practice of Displacement Chromatography. Separation and Purification Reviews, 1990, 19, 31-91.	0.8	45
98	Displacement Chromatography of Proteins Under Elevated Flow Rate and Crossing Isotherm Conditions. Biotechnology Progress, 1989, 5, 92-97.	1.3	34