Dennis L Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9399979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chemical Society Reviews, 2006, 35, 605.	18.7	560
2	The Cycloaddition Strategy for the Synthesis of Natural Products Containing Carbocyclic Seven-Membered Rings. Chemistry - A European Journal, 2006, 12, 3438-3447.	1.7	248
3	Selective Inhibitor of Proteasome's Caspase-like Sites Sensitizes Cells to Specific Inhibition of Chymotrypsin-like Sites. Chemistry and Biology, 2009, 16, 1278-1289.	6.2	147
4	An Imine Addition/Ring-Closing Metathesis Approach to the Spirocyclic Core of Halichlorine and Pinnaic Acid. Organic Letters, 2000, 2, 1847-1850.	2.4	146
5	Studies on the reactivity of CDDO, a promising new chemopreventive and chemotherapeutic agent: implications for a molecular mechanism of action. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2215-2219.	1.0	102
6	Application of Olefin Metathesis to Organic Synthesis. Current Organic Chemistry, 1999, 3, 211-240.	0.9	85
7	Tropolones As Lead-Like Natural Products: The Development of Potent and Selective Histone Deacetylase Inhibitors. ACS Medicinal Chemistry Letters, 2013, 4, 757-761.	1.3	82
8	USP7-Specific Inhibitors Target and Modify the Enzyme's Active Site via Distinct Chemical Mechanisms. Cell Chemical Biology, 2017, 24, 1501-1512.e5.	2.5	80
9	Studies on the sequential multi-component coupling/Diels–Alder cycloaddition reaction. Tetrahedron Letters, 2002, 43, 943-946.	0.7	76
10	Highly Efficient Ligands for Dihydrofolate Reductase fromCryptosporidiumhominisandToxoplasmagondiiInspired by Structural Analysis. Journal of Medicinal Chemistry, 2007, 50, 940-950.	2.9	72
11	Studies on Inducers of Nerve Growth Factor:  Synthesis of the Cyathin Core. Organic Letters, 1999, 1, 1535-1538.	2.4	71
12	Electrooxidative Coupling of Furans and Silyl Enol Ethers:  Application to the Synthesis of Annulated Furans. Journal of Organic Chemistry, 2004, 69, 3726-3734.	1.7	63
13	A carbonyl-ylide approach to the tigliane diterpenes. Tetrahedron Letters, 1994, 35, 8311-8314.	0.7	62
14	Drugging the Folate Pathway in Mycobacterium tuberculosis: The Role of Multi-targeting Agents. Cell Chemical Biology, 2019, 26, 781-791.e6.	2.5	57
15	A metallocarbenoid approach to the formation of spirocyclic ammonium ylides leading to the preparation of medium-sized azacane rings. Tetrahedron Letters, 1996, 37, 2165-2168.	0.7	55
16	Cyclopropene Cycloadditions with Annulated Furans: Total Synthesis of (+)- and (â^')-Frondosin B and (+)-Frondosin A. Journal of the American Chemical Society, 2014, 136, 4309-4315.	6.6	55
17	Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternate Conformation of NADPH That May Be Linked to Trimethoprim Resistance. Journal of Molecular Biology, 2009, 387, 1298-1308.	2.0	53
18	Antibacterial Antifolates: From Development through Resistance to the Next Generation. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a028324.	2.9	53

#	Article	IF	CITATIONS
19	Thegem-Dialkyl Effect in Electron Transfer Reactions:Â Rapid Synthesis of Seven-Membered Rings through an Electrochemical Annulation. Journal of the American Chemical Society, 2005, 127, 8034-8035.	6.6	44
20	Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting <i>Bacillus anthracis</i> Dihydrofolate Reductase. Journal of Medicinal Chemistry, 2008, 51, 7532-7540.	2.9	44
21	Inhibitors of phosphoinositide-3-kinase: a structure-based approach to understanding potency and selectivity. Organic and Biomolecular Chemistry, 2009, 7, 840.	1.5	44
22	Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase. Journal of Structural Biology, 2010, 170, 93-97.	1.3	44
23	RECENT PROGRESS ON THE SYNTHESIS OF CYATHANE TYPE DITERPENES. A REVIEW. Organic Preparations and Procedures International, 2000, 32, 307-330.	0.6	42
24	Synthesis of Functionalized Pyrans by Domino Metathesis Reaction of Oxabicyclo Derivatives: Dramatic Effect of Remote Substituents on Reactivity and Selectivity. Angewandte Chemie - International Edition, 2002, 41, 4560-4562.	7.2	42
25	Structure-Guided Development of Efficacious Antifungal Agents Targeting Candida glabrata Dihydrofolate Reductase. Chemistry and Biology, 2008, 15, 990-996.	6.2	41
26	Structure-Based Approach to the Development of Potent and Selective Inhibitors of Dihydrofolate Reductase from Cryptosporidium. Journal of Medicinal Chemistry, 2008, 51, 6839-6852.	2.9	39
27	Unusual Influence of Substituents on Ring-Opening Metathesis Reactions. Organic Letters, 2001, 3, 4275-4277.	2.4	36
28	Crystal Structures of Trimethoprim-Resistant DfrA1 Rationalize Potent Inhibition by Propargyl-Linked Antifolates. ACS Infectious Diseases, 2016, 2, 149-156.	1.8	36
29	Development of intestinal organoids as tissue surrogates: Cell composition and the Epigenetic control of differentiation. Molecular Carcinogenesis, 2015, 54, 189-202.	1.3	35
30	Highly Substituted Oxabicyclic Derivatives from Furan: Synthesis of (±)-Platensimycin. Organic Letters, 2011, 13, 2263-2265.	2.4	34
31	Z-Phe-Ala-diazomethylketone (PADK) Disrupts and Remodels Early Oligomer States of the Alzheimer Disease Aβ42 Protein. Journal of Biological Chemistry, 2012, 287, 6084-6088.	1.6	34
32	Elucidating Features That Drive the Design of Selective Antifolates Using Crystal Structures of Human Dihydrofolate Reductase. Biochemistry, 2013, 52, 7318-7326.	1.2	34
33	Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chemical Science, 2017, 8, 4062-4072.	3.7	34
34	Propargyl-Linked Antifolates are Dual Inhibitors of <i>Candida albicans</i> and <i>Candida glabrata</i> . Journal of Medicinal Chemistry, 2014, 57, 2643-2656.	2.9	33
35	Toward New Therapeutics for Skin and Soft Tissue Infections: Propargyl-Linked Antifolates Are Potent Inhibitors of MRSA and Streptococcus pyogenes. PLoS ONE, 2012, 7, e29434.	1.1	32
36	Charged Nonclassical Antifolates with Activity Against Gram-Positive and Gram-Negative Pathogens. ACS Medicinal Chemistry Letters, 2016, 7, 692-696.	1.3	31

#	Article	IF	CITATIONS
37	Two-Step Electrochemical Annulation for the Assembly of Polycyclic Systems. Organic Letters, 2002, 4, 3763-3765.	2.4	30
38	Furans as versatile synthons for target-oriented and diversity-oriented synthesis. Progress in Heterocyclic Chemistry, 2005, 17, 1-32.	0.5	30
39	Antifolate agents: a patent review (2006 – 2010). Expert Opinion on Therapeutic Patents, 2011, 21, 1293-1308.	2.4	30
40	Nonracemic Antifolates Stereoselectively Recruit Alternate Cofactors and Overcome Resistance in <i>S</i> . <i>aureus</i> . Journal of the American Chemical Society, 2015, 137, 8983-8990.	6.6	30
41	Intramolecular Aziridination:Â Decomposition of Diazoamides with Tethered Imino Bonds. Organic Letters, 1999, 1, 667-670.	2.4	29
42	MRSA Isolates from United States Hospitals Carry dfrG and dfrK Resistance Genes and Succumb to Propargyl-Linked Antifolates. Cell Chemical Biology, 2016, 23, 1458-1467.	2.5	29
43	A multi-component reaction (MCR) approach to the synthesis of highly diverse polymers with polypeptide-like features. Molecular Diversity, 2000, 6, 237-244.	2.1	28
44	Synthesis of the hamigeran skeleton through an electro-oxidative coupling reaction. Tetrahedron Letters, 2005, 46, 411-414.	0.7	28
45	Electrochemical annulation of five-membered rings through dearomatization of furans and thiophenes. Chemical Communications, 2006, , 194-196.	2.2	28
46	Silver-Promoted Reactions of Bicyclo[3.2.1]octadiene Derivatives. Organic Letters, 2002, 4, 1997-2000.	2.4	27
47	Prospective Screening of Novel Antibacterial Inhibitors of Dihydrofolate Reductase for Mutational Resistance. Antimicrobial Agents and Chemotherapy, 2012, 56, 3556-3562.	1.4	27
48	Altered specificity of Hint-W123Q supports a role for Hint inhibition by ASW in avian sex determination. Physiological Genomics, 2004, 20, 12-14.	1.0	26
49	The furan route to tropolones: probing the antiproliferative effects of β-thujaplicin analogs. Organic and Biomolecular Chemistry, 2012, 10, 8597.	1.5	26
50	Facile generation of aziridines from the reaction of α-diazoamides with tethered oximino-ethers. Tetrahedron Letters, 1996, 37, 7205-7208.	0.7	25
51	Tandem Metathesis Reactions of Oxabicyclo[2.2.1]heptenes: Studies on the Spirocyclic Core of Cyclopamine. Organic Letters, 2011, 13, 2433-2435.	2.4	25
52	Toward isozyme-selective inhibitors of histone deacetylase as therapeutic agents for the treatment of cancer. Pharmaceutical Patent Analyst, 2012, 1, 207-221.	0.4	25
53	Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations. Journal of Medicinal Chemistry, 2016, 59, 6493-6500.	2.9	25
54	Analysis of complexes of inhibitors with Cryptosporidium hominis DHFR leads to a new trimethoprim derivative. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4366-4370.	1.0	24

#	Article	IF	CITATIONS
55	Antifolates as effective antimicrobial agents: new generations of trimethoprim analogs. MedChemComm, 2013, 4, 908.	3.5	23
56	Crystal Structures of Klebsiella pneumoniae Dihydrofolate Reductase Bound to Propargyl-Linked Antifolates Reveal Features for Potency and Selectivity. Antimicrobial Agents and Chemotherapy, 2014, 58, 7484-7491.	1.4	23
57	Towards New Antifolates Targeting Eukaryotic Opportunistic Infections. Eukaryotic Cell, 2009, 8, 483-486.	3.4	22
58	Probing the Active Site of <i>Candida glabrata</i> Dihydrofolate Reductase with High Resolution Crystal Structures and the Synthesis of New Inhibitors. Chemical Biology and Drug Design, 2009, 73, 62-74.	1.5	22
59	Bridged Synthons from Tetrabromocyclopropene:Â Studies on the Rearrangement of the Primary Dielsâ~'Alder Adduct with 2,5-Dimethylfuran. Journal of Organic Chemistry, 2004, 69, 570-572.	1.7	21
60	Bicyclo[3.2.1]octane Synthons from Cyclopropenes:Â Functionalization of Cycloadducts by Nucleophilic Additions. Journal of Organic Chemistry, 2004, 69, 406-416.	1.7	21
61	Highâ€mobilityâ€group protein 2 regulated by microRNAâ€127 and small heterodimer partner modulates pluripotency of mouse embryonic stem cells and liver tumor initiating cells. Hepatology Communications, 2017, 1, 816-830.	2.0	21
62	Structural and Functional Studies of Bacterial Enolase, a Potential Target against Gram-Negative Pathogens. Biochemistry, 2019, 58, 1188-1197.	1.2	20
63	Annulated heterocycles through a radical-cation cyclization: synthetic and mechanistic studies. Tetrahedron, 2006, 62, 6551-6557.	1.0	19
64	Novel α-substituted tropolones promote potent and selective caspase-dependent leukemia cell apoptosis. Pharmacological Research, 2016, 113, 438-448.	3.1	17
65	Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget, 2017, 8, 76085-76098.	0.8	17
66	Carbonyl Ylides. Chemistry of Heterocyclic Compounds (New York, 1951): A Series of Monographs, 2003, , 253-314.	0.0	16
67	New Chiral Building Blocks from Tetrabromocyclopropene and Furan. Journal of Organic Chemistry, 2004, 69, 6931-6933.	1.7	16
68	Photocurable hard and porous biomaterials from ROMP precursors cross-linked with diyl radicals. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5262-5265.	1.0	16
69	Resolution of Methyl Nonactate byRhodococcuserythropolisunder Aerobic and Anaerobic Conditions. Organic Letters, 2006, 8, 443-445.	2.4	16
70	Structural analysis of the active sites of dihydrofolate reductase from two species of Candida uncovers ligand-induced conformational changes shared among species. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1279-1284.	1.0	16
71	Toward Broad Spectrum Dihydrofolate Reductase Inhibitors Targeting Trimethoprim Resistant Enzymes Identified in Clinical Isolates of Methicillin Resistant <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2019, 5, 1896-1906.	1.8	16
72	Halogenated Oxabicyclo[3.2.1]octadiene Building Blocks: Elaboration of the Dibromoenone. European Journal of Organic Chemistry, 2005, 2005, 4296-4303.	1.2	15

#	Article	IF	CITATIONS
73	In vitro biological activity and structural analysis of 2,4-diamino-5-(2′-arylpropargyl)pyrimidine inhibitors of Candida albicans. Bioorganic and Medicinal Chemistry, 2009, 17, 4866-4872.	1.4	15
74	Measuring Propargyl-Linked Drug Populations Inside Bacterial Cells, and Their Interaction with a Dihydrofolate Reductase Target, by Raman Microscopy. Biochemistry, 2015, 54, 2719-2726.	1.2	15
75	Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis. PLoS ONE, 2016, 11, e0161740.	1.1	15
76	Natural products in parallel synthesis: Triazole libraries of nonactic acid. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3946-3949.	1.0	14
77	Synthetic and computational studies on liphagal: a natural product inhibitor of PI-3K. Tetrahedron Letters, 2010, 51, 6120-6122.	0.7	14
78	Antifolate agents: a patent review (2010 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 687-697.	2.4	14
79	Synthesis of versatile bicyclo[5.4.0]undecane systems from tetrachlorocyclopropene. Tetrahedron Letters, 2004, 45, 2093-2096.	0.7	12
80	Studies on the Diels–Alder reaction of annulated furans: application to the synthesis of substituted phenanthrenes. Tetrahedron Letters, 2005, 46, 2789-2793.	0.7	12
81	Nonpeptidic Lysosomal Modulators Derived from Z-Phe-Ala-Diazomethylketone for Treating Protein Accumulation Diseases. ACS Medicinal Chemistry Letters, 2012, 3, 920-924.	1.3	12
82	The Frondosins: An Unusual Synthetic and Stereochemical Journey. European Journal of Organic Chemistry, 2015, 2015, 1387-1401.	1.2	12
83	Identification of novel compounds that enhance colon cancer cell sensitivity to inflammatory apoptotic ligands. Cancer Biology and Therapy, 2013, 14, 436-449.	1.5	11
84	Studies on the antiproliferative effects of tropolone derivatives in Jurkat T-lymphocyte cells. Bioorganic and Medicinal Chemistry, 2014, 22, 2188-2193.	1.4	11
85	Acetylenic Linkers in Lead Compounds: A Study of the Stability of the Propargyl-Linked Antifolates. Drug Metabolism and Disposition, 2012, 40, 2002-2008.	1.7	10
86	Stereodivergent Resolution of Oxabicyclic Ketones: Preparation of Key Intermediates for Platensimycin and Other Natural Products. Journal of Organic Chemistry, 2013, 78, 10555-10559.	1.7	10
87	The Tandem Ring Opening/Ring Closing Metathesis Route to Oxaspirocycles: An Approach to Phelligridin G. Molecules, 2013, 18, 2438-2448.	1.7	10
88	Functional and structural basis of E. coli enolase inhibition by SF2312: a mimic of the carbanion intermediate. Scientific Reports, 2019, 9, 17106.	1.6	9
89	Ring-opening metathesis polymerization with [2+2]-crosslinking to create new materials. Tetrahedron Letters, 2004, 45, 8635-8637.	0.7	8
90	Oxabicyclo[3.2.1]octane Derivatives as Highly Reactive Dienophiles:  Synthesis of Bicyclo[5.n.0] Systems. Organic Letters, 2005, 7, 423-425.	2.4	8

#	Article	IF	CITATIONS
91	Viridin analogs derived from steroidal building blocks. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6919-6922.	1.0	8
92	Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Communications Biology, 2022, 5, 459.	2.0	8
93	SYNTHESIS OF HIGHLY FUNCTIONALIZED ARENE SYSTEMS. NOVEL SELECTIVITIES OF INTRA- AND INTERMOLECULAR FRIEDEL–CRAFTS REACTIONS. Synthetic Communications, 2002, 32, 2417-2425.	1.1	7
94	Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301. PLoS ONE, 2016, 11, e0153818.	1.1	7
95	Spindle Assembly Disruption and Cancer Cell Apoptosis with a CLTC-Binding Compound. Molecular Cancer Research, 2018, 16, 1361-1372.	1.5	7
96	Dihydrofolate reductase inhibitors: developments in antiparasitic chemotherapy. Expert Opinion on Therapeutic Patents, 2008, 18, 143-157.	2.4	6
97	The Antifolates. Topics in Medicinal Chemistry, 2017, , 123-149.	0.4	6
98	Tropolone-induced effects on the unfolded protein response pathway and apoptosis in multiple myeloma cells are dependent on iron. Leukemia Research, 2019, 77, 17-27.	0.4	6
99	Chiral evasion and stereospecific antifolate resistance in Staphylococcus aureus. PLoS Computational Biology, 2022, 18, e1009855.	1.5	6
100	Synthesis of a Functionalized Oxabicyclo[2.2.1]-Heptene-Based Chemical Library. Combinatorial Chemistry and High Throughput Screening, 2012, 15, 81-89.	0.6	4
101	Structure-Guided In Vitro to In Vivo Pharmacokinetic Optimization of Propargyl-Linked Antifolates. Drug Metabolism and Disposition, 2019, 47, 995-1003.	1.7	4
102	Natural product derivatives with bactericidal activity against Gram-positive pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5936-5938.	1.0	3
103	Direct Substitution of Arylalkynyl Carbinols Provides Access to Diverse Terminal Acetylene Building Blocks. Organic Letters, 2017, 19, 142-145.	2.4	3
104	Post-Glycosylation Diversification (PGD): An Approach for Assembling Collections of Glycosylated Small Molecules. ACS Combinatorial Science, 2019, 21, 192-197.	3.8	3
105	Versatile Oxabicyclic Synthons: Studies on C8-Oxygenated Eunicellin Diterpenes. Synlett, 2007, 2007, 2647-2650.	1.0	2
106	Oxabicyclic Building Blocks as Key Intermediates in the Synthesis of the Natural Products (â~')-Platensimycin and (+)-Frondosin A. Strategies and Tactics in Organic Synthesis, 2014, , 155-181.	0.1	1
107	The challenge of resistance in antimicrobial drug development. Future Microbiology, 2015, 10, 1709-1710.	1.0	1
108	Pharmaceutical analysis of a novel propargyl-linked antifolate antibiotic in the mouse. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1051, 54-59.	1.2	1

#	Article	IF	CITATIONS
109	The role of organic synthesis in the generation of molecular diversity. Organic Synthesis: Theory and Applications, 2001, , 197-254.	0.0	1
110	Two-Step Electrochemical Annulation for the Assembly of Polycyclic Systems ChemInform, 2003, 34, no.	0.1	0
111	The Role of Organic Synthesis in the Generation of Molecular Diversity. ChemInform, 2003, 34, no.	0.1	0
112	Bicyclo[3.2.1]octane Synthons from Cyclopropenes: Functionalization of Cycloadducts by Nucleophilic Additions ChemInform, 2004, 35, no.	0.1	0
113	New Chiral Building Blocks from Tetrabromocyclopropene and Furan ChemInform, 2005, 36, no.	0.1	0
114	Oxabicyclo[3.2.1]octane Derivatives as Highly Reactive Dienophiles: Synthesis of Bicyclo[5.n.0] Systems ChemInform, 2005, 36, no.	0.1	0
115	Studies on the Diels—Alder Reaction of Annulated Furans: Application to the Synthesis of Substituted Phenanthrenes ChemInform, 2005, 36, no.	0.1	0
116	The gem-Dialkyl Effect in Electron Transfer Reactions: Rapid Synthesis of Seven-Membered Rings Through an Electrochemical Annulation ChemInform, 2005, 36, no.	0.1	0
117	Azaviridins as New Scaffolds for the Development of PI-3K Inhibitors. Synlett, 2010, 2010, 2875-2878.	1.0	0