Sarah L Tansley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9399807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Commercial Anti-TIF1Î ³ ELISA Is Superior to Line and Dot Blot and Should Be Considered as Part of Routine Myositis-Specific Antibody Testing. Frontiers in Immunology, 2022, 13, 804037.	4.8	9
2	British Society for Rheumatology guideline on management of paediatric, adolescent and adult patients with idiopathic inflammatory myopathy. Rheumatology, 2022, 61, 1760-1768.	1.9	37
3	P221 Autoantibodies are common in patients with idiopathic interstitial lung disease, suggesting a high prevalence of undiagnosed autoimmune connective tissue disease. Rheumatology, 2022, 61, .	1.9	0
4	P290 Baseline monocyte count may help make a diagnosis of giant cell arteritis: results of routinely collected audit data from two centres. Rheumatology, 2022, 61, .	1.9	0
5	OA12 Autoantibodies are common in patients labelled as "idiopathic―interstitial lung disease suggesting a high prevalence of undiagnosed autoimmune connective tissue disease. Rheumatology, 2022, 61, .	1.9	0
6	P014â€∫Giant Cell Arteritis Patient Pathway: A Multi-Disciplinary Approach to Service Improvement in the time of COVID-19. Rheumatology, 2022, 61, .	1.9	0
7	P224â \in fAnti-PARP1 as a novel autoantibody in myositis. Rheumatology, 2022, 61, .	1.9	0
8	Identification and prediction of novel classes of long-term disease trajectories for patients with juvenile dermatomyositis using growth mixture models. Rheumatology, 2021, 60, 1891-1901.	1.9	6
9	Comment on: The reliability of immunoassays to detect autoantibodies in patients with myositis is dependent on autoantibody specificity: reply. Rheumatology, 2021, 60, e38-e38.	1.9	0
10	A systematic review and meta-analysis to inform cancer screening guidelines in idiopathic inflammatory myopathies. Rheumatology, 2021, 60, 2615-2628.	1.9	69
11	Anti–Cytosolic 5′â€Nucleotidase 1A Autoantibodies Are Absent in Juvenile Dermatomyositis. Arthritis and Rheumatology, 2021, 73, 1329-1333.	5.6	2
12	The myositis clinical phenotype associated with anti-Zo autoantibodies: a case series of nine UK patients. Rheumatology, 2020, 59, 1626-1631.	1.9	10
13	Autoantibodies in connective tissue disease. Best Practice and Research in Clinical Rheumatology, 2020, 34, 101462.	3.3	17
14	Comment on: The reliability of immunoassays to detect autoantibodies in patients with myositis is dependent on autoantibody specificity: reply. Rheumatology, 2020, 59, 2177-2178.	1.9	1
15	The promise, perceptions, and pitfalls of immunoassays for autoantibody testing in myositis. Arthritis Research and Therapy, 2020, 22, 117.	3.5	27
16	The reliability of immunoassays to detect autoantibodies in patients with myositis is dependent on autoantibody specificity. Rheumatology, 2020, 59, 2109-2114.	1.9	77
17	Increased number of cases of giant cell arteritis and higher rates of ophthalmic involvement during the era of COVID-19. Rheumatology Advances in Practice, 2020, 4, rkaa067.	0.7	14
18	Bye-bye muscle biopsy, we have autoantibodies with us now. Indian Journal of Rheumatology, 2020, 15, 74.	0.4	2

SARAH L TANSLEY

#	Article	IF	CITATIONS
19	Expression of myxovirusâ€resistance protein A: a possible marker of muscle disease activity and autoantibody specificities in juvenile dermatomyositis. Neuropathology and Applied Neurobiology, 2019, 45, 410-420.	3.2	36
20	004 High rates of live varicella zoster vaccination amongst patients on biological therapy: an audit. Rheumatology, 2019, 58, .	1.9	0
21	Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups. Annals of the Rheumatic Diseases, 2019, 78, 996-1002.	0.9	81
22	195 Apparent high frequency of disease flare following switch from reference biologic rituximab (Mabthera) to a biosimilar (Truxima) in patients with vasculitis. Rheumatology, 2019, 58, .	1.9	1
23	Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. Journal of Autoimmunity, 2019, 101, 48-55.	6.5	184
24	Juvenile Dermatomyositis—Clinical Phenotypes. Current Rheumatology Reports, 2019, 21, 74.	4.7	38
25	Histological heterogeneity in a large clinical cohort of juvenile idiopathic inflammatory myopathy: analysis by myositis autoantibody and pathological features. Neuropathology and Applied Neurobiology, 2019, 45, 495-512.	3.2	36
26	Autoantibodies in myositis. Nature Reviews Rheumatology, 2018, 14, 290-302.	8.0	248
27	Laboratory features—enzymes and biomarkers. , 2018, , .		0
28	Anti-HMGCR Autoantibodies in Juvenile Idiopathic Inflammatory Myopathies Identify a Rare but Clinically Important Subset of Patients. Journal of Rheumatology, 2017, 44, 488-492.	2.0	48
29	Biopsy pathology in a large cohort of juvenile dermatomyositis is heterogeneous and, for the most part, independent of autoantibody phenotype. Canadian Journal of Neurological Sciences, 2017, 44, S6-S6.	0.5	0
30	Autoantibodies in juvenile-onset myositis: Their diagnostic value and associated clinical phenotype in a large UK cohort. Journal of Autoimmunity, 2017, 84, 55-64.	6.5	121
31	CONNECTIVE TISSUE DISORDERS AND VASCULITIS ORAL ABSTRACTSO13. AUTOANTIBODY SUBTYPE IN PATIENTS WITH JUVENILE-ONSET MYOSITIS INFLUENCES TREATMENT RECEIVED. Rheumatology, 2017, 56, .	1.9	0
32	053.â€∱ANTI-SYNTHETASE AUTOANTIBODY IS SEEN IN PATIENTS WITH OVERLAP MYOSITIS IN THE UK COHORT O PATIENTS WITH JUVENILE DERMATOMYOSITIS. Rheumatology, 2017, 56, .)F 1.9	0
33	17. Anti-synthetase autoantibody is seen in patients with overlap myositis in the UK cohort of patients with Jveunile Dermatomyositis. Rheumatology, 2017, 56, .	1.9	1
34	174 A Diagnostic and Treatment Challenge: The Prevalence and Clinical Associations of Anti-HMG-CoA Reductase Autoantibodies in a Large UK Juvenile-Onset Myositis Cohort. Rheumatology, 2016, 55, i132-i133.	1.9	2
35	Antibodies in juvenile-onset myositis. Current Opinion in Rheumatology, 2016, 28, 645-650.	4.3	10
36	Muscle Biopsy Findings in Combination With Myositisâ€Specific Autoantibodies Aid Prediction of Outcomes in Juvenile Dermatomyositis. Arthritis and Rheumatology, 2016, 68, 2806-2816.	5.6	83

SARAH L TANSLEY

#	Article	IF	CITATIONS
37	Serological subsets of juvenile idiopathic inflammatory myopathies - an update. Expert Review of Clinical Immunology, 2016, 12, 427-437.	3.0	3
38	Developing standardised treatment for adults with myositis and different phenotypes: an international survey of current prescribing preferences. Clinical and Experimental Rheumatology, 2016, 34, 880-884.	0.8	7
39	Comparing and contrasting clinical and serological features of juvenile and adult-onset myositis. Current Opinion in Rheumatology, 2015, 27, 601-607.	4.3	15
40	O44. An Integrative Analytical Approach to Subphenotyping of Juvenile Dermatomyositis. Rheumatology, 2015, , .	1.9	0
41	The evidence for immunotherapy in dermatomyositis and polymyositis: a systematic review. Clinical Rheumatology, 2015, 34, 2089-2095.	2.2	24
42	O57. Autoantibody in Juvenile Dermatomyositis Reflects Disease Activity: Results of a Pilot Study. Rheumatology, 2014, 53, i54-i55.	1.9	1
43	181.â€∫Developing Standardized Treatment for Adults with Myositis and Different Phenotypes. Rheumatology, 2014, 53, i127-i127.	1.9	2
44	Sub-phenotyping of juvenile dermatomyositis: can it assist clinical decisions?. Pediatric Rheumatology, 2014, 12, .	2.1	1
45	Myositis Specific and Associated Autoantibodies in the Diagnosis and Management of Juvenile and Adult Idiopathic Inflammatory Myopathies. Current Rheumatology Reports, 2014, 16, 464.	4.7	25
46	Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study. Arthritis Research and Therapy, 2014, 16, R138.	3.5	145
47	Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatology, 2014, 53, 2204-2208.	1.9	130
48	The Evolving Spectrum of Polymyositis and Dermatomyositis—Moving Towards Clinicoserological Syndromes: A Critical Review. Clinical Reviews in Allergy and Immunology, 2014, 47, 264-273.	6.5	53
49	Adult and juvenile dermatomyositis: are the distinct clinical features explained by our current understanding of serological subgroups and pathogenic mechanisms?. Arthritis Research and Therapy, 2013, 15, 211.	3.5	75
50	The diagnostic utility of autoantibodies in adult and juvenile myositis. Current Opinion in Rheumatology, 2013, 25, 772-777.	4.3	52
51	Capecitabine-induced acute myeloid leukaemia. New Zealand Medical Journal, 2009, 122, 118-9.	0.5	2