Jonathan J Cole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9399707/publications.pdf

Version: 2024-02-01

204 papers 32,670 citations

4370 86 h-index 175 g-index

207 all docs

207 docs citations

times ranked

207

20529 citing authors

#	Article	IF	CITATIONS
1	Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 2007, 10, 172-185.	1.6	2,836
2	The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 2006, 51, 2388-2397.	1.6	1,426
3	Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 1999, 14, 483-488.	4.2	1,209
4	BACTERIAL GROWTH EFFICIENCY IN NATURAL AQUATIC SYSTEMS. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 503-541.	6.7	1,144
5	Carbon Dioxide Supersaturation in the Surface Waters of Lakes. Science, 1994, 265, 1568-1570.	6.0	967
6	Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 2004, 18 , n/a - n/a .	1.9	890
7	Atmospheric exchange of carbon dioxide in a lowâ€wind oligotrophic lake measured by the addition of SF ₆ . Limnology and Oceanography, 1998, 43, 647-656.	1.6	785
8	Early Warnings of Regime Shifts: A Whole-Ecosystem Experiment. Science, 2011, 332, 1079-1082.	6.0	723
9	Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 1997, 385, 148-151.	13.7	645
10	Interactions Between Bacteria and Algae in Aquatic Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 1982, 13, 291-314.	6.7	637
11	Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 2011, 4, 593-596.	5.4	600
12	Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 2004, 427, 240-243.	13.7	497
13	Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research, 2001, 52, 101.	0.7	496
14	Gas Exchange in Rivers and Estuaries: Choosing a Gas Transfer Velocity. Estuaries and Coasts, 2001, 24, 312.	1.7	479
15	TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS. Ecological Monographs, 2001, 71, 163-186.	2.4	448
16	Transformation of Freshwater Ecosystems by Bivalves. BioScience, 1999, 49, 19.	2.2	440
17	Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography, 2000, 45, 1718-1730.	1.6	400
18	Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature, 1989, 341, 316-318.	13.7	394

#	Article	IF	CITATIONS
19	Fates of methane from different lake habitats: Connecting wholeâ€lake budgets and CH ₄ emissions. Journal of Geophysical Research, 2008, 113, .	3.3	392
20	Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnology and Oceanography, 2007, 52, 1208-1219.	1.6	391
21	Sedimentation of biogenic matter in the deep ocean. Deep-sea Research Part A, Oceanographic Research Papers, 1982, 29, 609-625.	1.6	365
22	ECOSYSTEM SUBSIDIES: TERRESTRIAL SUPPORT OF AQUATIC FOOD WEBS FROM13C ADDITION TO CONTRASTING LAKES. Ecology, 2005, 86, 2737-2750.	1.5	341
23	Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnology and Oceanography, 1988, 33, 669-687.	1.6	325
24	ZEBRA MUSSEL INVASION IN A LARGE, TURBID RIVER: PHYTOPLANKTON RESPONSE TO INCREASED GRAZING. Ecology, 1997, 78, 588-602.	1.5	322
25	Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	318
26	Increase in the Export of Alkalinity from North America's Largest River. Science, 2003, 301, 88-91.	6.0	310
27	Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters, 2006, 9, 558-568.	3.0	305
28	Influence of Food Web Structure on Carbon Exchange Between Lakes and the Atmosphere. Science, 1997, 277, 248-251.	6.0	297
29	Human influence on river nitrogen. Nature, 1991, 350, 386-387.	13.7	292
30	Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1975-1980.	3.3	291
31	Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria1. Limnology and Oceanography, 1982, 27, 1080-1090.	1.6	277
32	Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnology and Oceanography, 1998, 43, 73-80.	1.6	266
33	Global abundance and size distribution of streams and rivers. Inland Waters, 2012, 2, 229-236.	1.1	257
34	The Biogeochemistry of Carbon at Hubbard Brook. Biogeochemistry, 2005, 75, 109-176.	1.7	246
35	Atmospheric CO ₂ evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography, 2000, 45, 1707-1717.	1.6	241
36	Carbon Dioxide Concentration and Atmospheric Flux in the Hudson River. Estuaries and Coasts, 1997, 20, 381.	1.7	240

#	Article	IF	CITATIONS
37	Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Biogeochemical controls. Limnology and Oceanography, 1988, 33, 688-701.	1.6	236
38	Autochthonous versus allochthonous carbon sources of bacteria: Results from whole″ake ⟨sup⟩13⟨ sup⟩C addition experiments. Limnology and Oceanography, 2004, 49, 588-596.	1.6	223
39	Molybdenum Availability, Nitrogen Limitation, and Phytoplankton Growth in Natural Waters. Science, 1985, 229, 653-655.	6.0	219
40	Lake metabolism and the diel oxygen technique: State of the science. Limnology and Oceanography: Methods, 2010, 8, 628-644.	1.0	214
41	Synchronous variation of dissolved organic carbon and color in lakes. Limnology and Oceanography, 2002, 47, 333-342.	1.6	206
42	LINKING PLANKTONIC BIOMASS AND METABOLISM TO NET GAS FLUXES IN NORTHERN TEMPERATE LAKES. Ecology, 1999, 80, 1422-1431.	1.5	203
43	The relationship between nearâ€surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and Oceanography, 2010, 55, 1723-1732.	1.6	203
44	Lakeâ€size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters, 2012, 39, .	1.5	199
45	Can phytoplankton maintaina positive carbon balance in a turbid, freshwater, tidal estuary?. Limnology and Oceanography, 1992, 37, 1608-1617.	1.6	198
46	Pathways of organic carbon utilization in small lakes: Results from a whole″ake ¹³ C addition and coupled model. Limnology and Oceanography, 2002, 47, 1664-1675.	1.6	197
47	Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary. Limnology and Oceanography, 1991, 36, 268-278.	1.6	191
48	Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation?. Ecosystems, 2006, 9, 152-155.	1.6	189
49	The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnology and Oceanography, 2002, 47, 316-321.	1.6	185
50	Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters1. Limnology and Oceanography, 1986, 31, 68-78.	1.6	180
51	Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Marine Chemistry, 2004, 92, 353-366.	0.9	180
52	CONTRASTING IMPACTS OF A NATIVE AND ALIEN MACROPHYTE ON DISSOLVED OXYGEN IN A LARGE RIVER. , 2002, 12, 1496-1509.		171
53	Multiple approaches to estimating airâ€water gas exchange in small lakes. Limnology and Oceanography: Methods, 2010, 8, 285-293.	1.0	171
54	Leading indicators of trophic cascades. Ecology Letters, 2008, 11, 128-138.	3.0	157

#	Article	IF	CITATIONS
55	A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry, 1990, 9, 277.	1.7	155
56	Controls of δ ¹³ Câ€DIC in lakes: Geochemistry, lake metabolism, and morphometry. Limnology and Oceanography, 2004, 49, 1160-1172.	1.6	152
57	Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology, 2011, 92, 1115-1125.	1.5	146
58	Cognitions Associated With Attempts to Empathize: How Do We Imagine the Perspective of Another?. Personality and Social Psychology Bulletin, 2004, 30, 1625-1635.	1.9	145
59	Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?. Ecosystems, 2018, 21, 1058-1071.	1.6	145
60	Aquatic Microbiology for Ecosystem Scientists: New and Recycled Paradigms in Ecological Microbiology. Ecosystems, 1999, 2, 215-225.	1.6	144
61	Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microbial Ecology, 1994, 28, 181-193.	1.4	138
62	FACIAL EXPRESSION RECOGNITION BY PEOPLE WITH MÖBIUS SYNDROME. Cognitive Neuropsychology, 2000, 17, 73-87.	0.4	138
63	${\rm CO}\$ sub>2 emissions from saline lakes: A global estimate of a surprisingly large flux. Journal of Geophysical Research, 2008, 113, .	3.3	137
64	Assessing pelagic and benthic metabolism using free water measurements. Limnology and Oceanography: Methods, 2007, 5, 145-155.	1.0	135
65	Expanding the concept of trophic state in aquatic ecosystems: It's not just the autotrophs. Aquatic Sciences, 2007, 69, 427-439.	0.6	134
66	Vascular Plants as Engineers of Oxygen in Aquatic Systems. BioScience, 2006, 56, 219.	2.2	128
67	Does terrestrial organic carbon subsidize the planktonic food web in a clearâ€water lake?. Limnology and Oceanography, 2007, 52, 2177-2189.	1.6	128
68	Biological Control of Eutrophication in Lakes. Environmental Science & Environmental Science & 1995, 29, 784-786.	4.6	123
69	Linkages between Aquatic Sediment Biota and Life Above Sediments as Potential Drivers of Biodiversity and Ecological Processes. BioScience, 2000, 50, 1062.	2.2	120
70	The influence of environmental water on the hydrogen stable isotope ratio in aquatic consumers. Oecologia, 2009, 161, 313-324.	0.9	120
71	The study of carbon in inland watersâ€"from isolated ecosystems to players in the global carbon cycle. Limnology and Oceanography Letters, 2018, 3, 41-48.	1.6	118
72	Global Change and the Biodiversity of Freshwater Ecosystems: Impacts on Linkages between Above-Sediment and Sediment Biota. BioScience, 2000, 50, 1099.	2.2	117

#	Article	IF	Citations
73	Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochemical Cycles, 2013, 27, 43-51.	1.9	117
74	Microbial assimilation of DIN in a nitrogen rich estuary:implications for food quality and isotope studies. Marine Ecology - Progress Series, 1998, 167, 59-71.	0.9	117
75	Regulation of planktonic bacterial growth rates: The effects of temperature and resources. Microbial Ecology, 1996, 31, 15-28.	1.4	116
76	Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs?. Aquatic Microbial Ecology, 2005, 38, 103-111.	0.9	115
77	Emissions of Nitrous Oxide (N2O) from a Tidal, Freshwater River, the Hudson River, New York. Environmental Science & Environme	4.6	114
78	Millennialâ€aged organic carbon subsidies to a modern river food web. Ecology, 2010, 91, 2385-2393.	1.5	114
79	Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. Freshwater Biology, 1998, 39, 375-386.	1.2	111
80	Introduction to coupled biogeochemical cycles. Frontiers in Ecology and the Environment, 2011, 9, 5-8.	1.9	111
81	Top down control from the bottom: Regulation of eutrophication in a large river by benthic grazing. Limnology and Oceanography, 2006, 51, 664-670.	1.6	109
82	Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls1. Limnology and Oceanography, 1988, 33, 688-701.	1.6	106
83	Regulation of bacteria by resources and predation tested in whole-lake experiments. Limnology and Oceanography, 1996, 41, 1448-1460.	1.6	104
84	TROPHIC CASCADES AND COMPENSATION: DIFFERENTIAL RESPONSES OF MICROZOOPLANKTON IN WHOLE-LAKE EXPERIMENTS. Ecology, 1998, 79, 138-152.	1.5	95
85	Composition and degradation of salp fecal pellets: Implications for vertical flux in oceanic environments. Journal of Marine Research, 1989, 47, 829-850.	0.3	93
86	Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. Aquatic Sciences, 2010, 72, 283-293.	0.6	92
87	pH change induces shifts in the size and light absorption of dissolved organic matter. Biogeochemistry, 2012, 108, 109-118.	1.7	91
88	Nutrient–chlorophyll relationships in tropical–subtropical lakes: do temperate models fit?. Biogeochemistry, 2006, 79, 239-250.	1.7	90
89	Shortâ€range atmospheric transport: A significant source of phosphorus to an oligotrophic lake. Limnology and Oceanography, 1990, 35, 1230-1237.	1.6	85
90	Bacterial Growth on Allochthonous Carbon in Humic and Nutrient-enriched Lakes: Results from Whole-Lake 13C Addition Experiments. Ecosystems, 2006, 9, 489-499.	1.6	84

#	Article	IF	Citations
91	Changes in phytoplankton community structure during the zebra mussel (Dreissena polymorpha) invasion of the Hudson River (New York). Journal of Plankton Research, 1998, 20, 1567-1579.	0.8	82
92	Integrating Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes. Ecosystems, 2015, 18, 363-375.	1.6	81
93	Bacterial biomass and cell size distributions in lakes: More and larger cells in anoxic waters. Limnology and Oceanography, 1993, 38, 1627-1632.	1.6	80
94	Filtration of Hudson River Water by the Zebra Mussel (Dreissena polymorpha). Estuaries and Coasts, 1996, 19, 824.	1.7	80
95	Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions. Biogeochemistry, 2007, 84, 115-129.	1.7	80
96	Reversal of a cyanobacterial bloom in response to early warnings. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 352-357.	3.3	79
97	Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnology and Oceanography, 2012, 57, 1689-1700.	1.6	77
98	Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry, 1999, 44, 259-280.	1.7	76
99	Dissolved Oxygen Declines in the Hudson River Associated with the Invasion of the Zebra Mussel (Dreissena polymorpha). Environmental Science & Eamp; Technology, 2000, 34, 1204-1210.	4.6	75
100	Depth-integrated, continuous estimates of metabolism in a clear-water lake. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 712-722.	0.7	75
101	New and recycled primary production in an oligotrophic lake: Insights for summer phosphorus dynamics. Limnology and Oceanography, 1992, 37, 590-602.	1.6	74
102	Can algal photosynthetic inorganic carbon isotope fractionation be predicted in lakes using existing models?. Aquatic Sciences, 2006, 68, 142-153.	0.6	74
103	Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshwater Biology, 2013, 58, 2037-2049.	1.2	74
104	Interactions of Photobleaching and Inorganic Nutrients in Determining Bacterial Growth on Colored Dissolved Organic Carbon. Microbial Ecology, 1998, 36, 270-280.	1.4	71
105	Nitrogen Loading of Rivers as a Human-Driven Process. , 1993, , 141-157.		70
106	Bacterial secondary production in oxic and anoxic freshwaters. Limnology and Oceanography, 1995, 40, 1019-1027.	1.6	70
107	With and without warning: managing ecosystems in a changing world. Frontiers in Ecology and the Environment, 2015, 13, 460-467.	1.9	66
108	Large CO ₂ effluxes at night and during synoptic weather events significantly contribute to CO ₂ emissions from a reservoir. Environmental Research Letters, 2016, 11, 064001.	2.2	66

#	Article	IF	Citations
109	Biomass and annual production of the freshwater mussel Elliptio complanata in an oligotrophic softwater lake. Freshwater Biology, 1981, 11, 435-440.	1.2	64
110	Terrestrial Subsidies of Organic Carbon Support Net Ecosystem Production in Temporary Forest Ponds: Evidence from an Ecosystem Experiment. Ecosystems, 2006, 9, 1170-1176.	1.6	64
111	Hydroelectric carbon sequestration. Nature Geoscience, 2012, 5, 838-840.	5.4	64
112	Rapid and precise determination of dissolved oxygen by spectrophotometry: Evaluation of interference from color and turbidity. Limnology and Oceanography, 1999, 44, 1148-1154.	1.6	63
113	Sources and Molecular Weight of "Dissolved" Organic Carbon in an Oligotrophic Lake. Oikos, 1984, 42, 1.	1.2	62
114	Benthic decomposition of organic matter at a deep-water site in the Panama Basin. Nature, 1987, 327, 703-704.	13.7	62
115	Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water. Limnology and Oceanography, 1993, 38, 25-35.	1.6	62
116	Spatial and Temporal Patterns of Nutrient Concentration and Export in the Tidal Hudson River. Estuaries and Coasts, 1999, 22, 285.	1.7	60
117	HYDROLOGY AND GRAZING JOINTLY CONTROL A LARGE-RIVER FOOD WEB. Ecology, 2008, 89, 12-18.	1.5	60
118	Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17398-17403.	3.3	59
119	Pelagic responses to changes in dissolved organic carbon following division of a seepage lake. Limnology and Oceanography, 1996, 41, 553-559.	1.6	57
120	Short-term variation in thermal stratification complicates estimation of lake metabolism. Aquatic Sciences, 2011, 73, 305-315.	0.6	55
121	Early warning signals precede cyanobacterial blooms in multiple wholeâ€lake experiments. Ecological Monographs, 2018, 88, 188-203.	2.4	54
122	Regulation of bacterial growth efficiency in a large turbid estuary. Aquatic Microbial Ecology, 1999, 20, 31-38.	0.9	54
123	Impact of chemically enhanced diffusion on dissolved inorganic carbon stable isotopes in a fertilized lake. Journal of Geophysical Research, 2006, 111 , .	3.3	53
124	Title is missing!. Biogeochemistry, 2003, 64, 247-269.	1.7	52
125	Diary of a bluegill (Lepomis macrochirus): daily $\hat{\Gamma}$ 13C and $\hat{\Gamma}$ 18O records in otoliths by ion microprobe. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 1641-1645.	0.7	50
126	Hydrologic Variability of Small, Northern Michigan Lakes Measured by the Addition of Tracers. Ecosystems, 1998, 1, 310-320.	1.6	49

#	Article	IF	CITATIONS
127	Linking Planktonic Biomass and Metabolism to Net Gas Fluxes in Northern Temperate Lakes. Ecology, 1999, 80, 1422.	1.5	49
128	Modeled Effects of Dissolved Organic Carbon and Solar Spectra on Photobleaching in Lake Ecosystems. Ecosystems, 2000, 3, 419-432.	1.6	49
129	Decadal-Scale Change in a Large-River Ecosystem. BioScience, 2014, 64, 496-510.	2.2	49
130	Decomposition of Planktonic Algae in an Oligotrophic Lake. Oikos, 1984, 42, 257.	1,2	48
131	Population dynamics of bacterioplankton in an oligotrophic lake. Journal of Plankton Research, 1995, 17, 365-391.	0.8	47
132	Temporal dynamics of dissolved oxygen in a floating–leaved macrophyte bed. Freshwater Biology, 2008, 53, 1632-1641.	1.2	47
133	Exogenously produced CO ₂ doubles the CO ₂ efflux from three north temperate lakes. Geophysical Research Letters, 2016, 43, 1996-2003.	1.5	46
134	Evaluating Alternative Explanations in Ecosystem Experiments. Ecosystems, 1998, 1, 335-344.	1.6	45
135	Terrestrial support of zebra mussels and the Hudson River food web: A multiâ€isotope, Bayesian analysis. Limnology and Oceanography, 2012, 57, 1802-1815.	1.6	45
136	Carbon Sequestration in a Large Hydroelectric Reservoir: An Integrative Seismic Approach. Ecosystems, 2014, 17, 430-441.	1.6	45
137	Longitudinal Spatial Patterns of Bacterial Production and Respiration in a Large River–Estuary: Implications for Ecosystem Carbon Consumption. Ecosystems, 2005, 8, 318-330.	1.6	43
138	Research frontiers in the analysis of coupled biogeochemical cycles. Frontiers in Ecology and the Environment, 2011, 9, 74-80.	1.9	42
139	Response of phytoplankton and bacteria to nutrients and zooplankton: a mesocosm experiment. Journal of Plankton Research, 1997, 19, 995-1010.	0.8	41
140	Carbon sources supporting fish growth in a north temperate lake. Aquatic Sciences, 2008, 70, 446-458.	0.6	41
141	Response of plankton to nutrients, planktivory and terrestrial organic matter: a model analysis of wholeâ€lake experiments. Ecology Letters, 2016, 19, 230-239.	3.0	41
142	Simplified Version of the Ampoule–Persulfate Method for Determination of Dissolved Organic Carbon. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, 214-218.	0.7	40
143	Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under seawater conditions: a non-reversible effect. Hydrobiologia, 2003, 500, 277-293.	1.0	38
144	Support of benthic invertebrates by detrital resources and current autochthonous primary production: results from a whole″ake ¹³ C addition. Freshwater Biology, 2008, 53, 42-54.	1.2	38

#	Article	IF	CITATIONS
145	A detailed organic carbon budget as an ecosystem-level calibration of bacterial respiration in an oligotrophic lake during midsummer. Limnology and Oceanography, 1989, 34, 286-296.	1.6	37
146	Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology, 2011, 92, 1115-1125.	1.5	37
147	Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry, 1986, 2, 179-196.	1.7	36
148	Uptake of dissolved organic matter (DOM) and its importance to metabolic requirements of the zebra mussel, <i>Dreissena polymorpha</i> Limnology and Oceanography, 2005, 50, 36-47.	1.6	36
149	Primary and bacterial production in lakes: are they coupled over depth?. Journal of Plankton Research, 1994, 16, 661-672.	0.8	35
150	Difficulty in Discerning Drivers of Lake Ecosystem Metabolism with High-Frequency Data. Ecosystems, 2011, 14, 935-948.	1.6	35
151	A new approach for rapid detection of nearby thresholds in ecosystem time series. Oikos, 2014, 123, 290-297.	1.2	35
152	A Cross-System Study of Phosphorus Release from Lake Sediments. , 1991, , 241-258.		34
153	Hydrogen isotope discrimination in aquatic primary producers: implications for aquatic food web studies. Aquatic Sciences, 2014, 76, 217-229.	0.6	34
154	Human influence on nitrogen export: a comparison of mesic and xeric catchments. Marine and Freshwater Research, 2001, 52, 119.	0.7	33
155	Measurements of mineralization of phytoplankton detritus in an oligotrophic lake1. Limnology and Oceanography, 1979, 24, 541-547.	1.6	32
156	Long-Term Temperature Trends of the Hudson River: A Study of the Historical Data. Estuaries and Coasts, 1994, 17, 166.	1.7	31
157	Resources supporting the food web of a naturally productive lake. Limnology and Oceanography, 2012, 57, 1443-1452.	1.6	30
158	Effects of whole-lake manipulations of nutrient loading and food web structure on planktonic respiration. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 487-496.	0.7	29
159	Why measure bacterial production? A reply to the comment by Jahnke and Craven. Limnology and Oceanography, 1995, 40, 441-444.	1.6	28
160	Changes in cyanobacterial dominance following the invasion of the zebra musselDreissena polymorpha: Long-term results from the Hudson River estuary. Estuaries and Coasts, 2007, 30, 163-170.	1.0	28
161	Aquatic metabolism in the Everglades: Dominance of water column heterotrophy. Limnology and Oceanography, 2010, 55, 653-666.	1.6	28
162	TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS., 2001, 71, 163.		28

#	Article	IF	CITATIONS
163	First Report of Generalized Face Processing Difficulties in Möbius Sequence. PLoS ONE, 2013, 8, e62656.	1.1	27
164	Aquatic metabolism in the Everglades: Dominance of water column heterotrophy. Limnology and Oceanography, 2010, 55, 653-666.	1.6	27
165	Variation in transparent exopolymer particles in relation to biological and chemical factors in two contrasting lake districts. Aquatic Sciences, 2010, 72, 443-453.	0.6	26
166	Asymmetric response of early warning indicators of phytoplankton transition to and from cycles. Theoretical Ecology, 2013, 6, 285-293.	0.4	26
167	Deuterium as a food source tracer: Sensitivity to environmental water, lipid content, and hydrogen exchange. Limnology and Oceanography: Methods, 2015, 13, 213-223.	1.0	26
168	Title is missing!. Biogeochemistry, 1999, 44, 259-280.	1.7	25
169	Freshwater in flux. Nature Geoscience, 2013, 6, 13-14.	5.4	25
170	Assigning hydrogen, carbon, and nitrogen isotope values for phytoplankton and terrestrial detritus in aquatic food web studies. Inland Waters, 2014, 4, 233-242.	1.1	25
171	Airborne carbon deposition on a remote forested lake. Aquatic Sciences, 2008, 70, 213-224.	0.6	24
172	Altered energy flow in the food web of an experimentally darkened lake. Ecosphere, 2015, 6, 1-23.	1.0	24
173	Physical and biological contributions to metalimnetic oxygen maxima in lakes. Limnology and Oceanography, 2015, 60, 242-251.	1.6	24
174	Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under sea water conditions: a non-reversible effect., 2003,, 277-293.		22
175	Annual Metabolism of a Temporary Pond Ecosystem. American Midland Naturalist, 1978, 100, 15.	0.2	21
176	Nutrient budgets of a temporary pond ecosystem. Hydrobiologia, 1979, 63, 213-222.	1.0	20
177	Dissolved organic matter and persistence of the invasive zebra mussel (Dreissena polymorpha) under low food conditions. Limnology and Oceanography, 2007, 52, 70-78.	1.6	20
178	A method for the measurement of particulate C and P on the same filtered sample. Marine Ecology - Progress Series, 2001, 217, 59-65.	0.9	20
179	CO2 and O2 dynamics in human-impacted watersheds in the state of São Paulo, Brazil. Biogeochemistry, 2008, 88, 271-283.	1.7	17
180	Leading indicators of phytoplankton transitions caused by resource competition. Theoretical Ecology, 2009, 2, 139-148.	0.4	17

#	Article	IF	CITATIONS
181	Effects of Postnatal Exposure to a Mixture of Polychlorinated Biphenyls, p,p′-dichlorodiphenyltrichloroethane, and p-p′-dichlorodiphenyldichloroethene in Prepubertal and Adult Female Sprague-Dawley Rats. International Journal of Toxicology, 2005, 24, 111-127.	0.6	16
182	Emissions from Amazonian dams. Nature Climate Change, 2013, 3, 1005-1005.	8.1	15
183	Primary Production and Its Regulation in the Tidal-Freshwater Hudson River. , 2006, , 107-120.		15
184	Seasonal variation in the flux of algal pigments to a deep-water site in the Panama Basin. Hydrobiologia, 1985, 122, 193-197.	1.0	14
185	Rapid microbial metabolism of non-protein amino acids in the sea. Biogeochemistry, 1986, 2, 299-312.	1.7	14
186	Coupled biogeochemical cycles and Earth stewardship. Frontiers in Ecology and the Environment, $2011, 9, 3-3$.	1.9	14
187	Use of deep autochthonous resources by zooplankton: Results of a metalimnetic addition of sup<13 (sup>C to a small lake. Limnology and Oceanography, 2014, 59, 986-996.	1.6	14
188	Defining the Key Competencies in Radiation Protection for Endovascular Procedures: A Multispecialty Delphi Consensus Study. European Journal of Vascular and Endovascular Surgery, 2018, 55, 281-287.	0.8	14
189	A practical method for measuring integrated solar radiation reaching streambeds using photodegrading dyes. Freshwater Science, 2012, 31, 1070-1077.	0.9	13
190	The Carbon Cycle. , 2013, , 109-135.		11
190	The Carbon Cycle., 2013, , 109-135. Photosynthesis or planktonic respiration?. Nature, 1997, 388, 132-133.	13.7	7
		13.7	
191	Photosynthesis or planktonic respiration?. Nature, 1997, 388, 132-133. Do Daphnia use metalimnetic organic matter in a north temperate lake? An analysis of vertical		7
191 192	Photosynthesis or planktonic respiration?. Nature, 1997, 388, 132-133. Do Daphnia use metalimnetic organic matter in a north temperate lake? An analysis of vertical migration. Inland Waters, 2012, 2, 193-198.	1.1	7
191 192 193	Photosynthesis or planktonic respiration?. Nature, 1997, 388, 132-133. Do Daphnia use metalimnetic organic matter in a north temperate lake? An analysis of vertical migration. Inland Waters, 2012, 2, 193-198. Production in pristine lakes. Nature, 2009, 460, 463-464.	1.1	7 7
191 192 193	Photosynthesis or planktonic respiration?. Nature, 1997, 388, 132-133. Do Daphnia use metalimnetic organic matter in a north temperate lake? An analysis of vertical migration. Inland Waters, 2012, 2, 193-198. Production in pristine lakes. Nature, 2009, 460, 463-464. On the Relevance of Comparative Ecology to the Larger Field of Ecology., 1991, , 46-63. Species loss in the brown world: are heterotrophic systems inherently stable?. Aquatic Sciences, 2012,	1.1	7 7 6
191 192 193 194	Photosynthesis or planktonic respiration?. Nature, 1997, 388, 132-133. Do Daphnia use metalimnetic organic matter in a north temperate lake? An analysis of vertical migration. Inland Waters, 2012, 2, 193-198. Production in pristine lakes. Nature, 2009, 460, 463-464. On the Relevance of Comparative Ecology to the Larger Field of Ecology., 1991, , 46-63. Species loss in the brown world: are heterotrophic systems inherently stable?. Aquatic Sciences, 2012, 74, 397-404.	1.1	7 7 6 6

#	Article	lF	CITATIONS
199	ASLO'S NEXT INTERNATIONAL MEETING- A CALL FOR PROPOSALS. Limnology and Oceanography Bulletin, 2005, 14, 65-66.	0.2	O
200	NOMINATE SOMEONE: ASLO AWARDS AND ASLO GOVERNANCE. Limnology and Oceanography Bulletin, 2005, 14, 63-64.	0.2	0
201	ASLO AWARDS: NOMINATE SOMEONE. Limnology and Oceanography Bulletin, 2006, 15, 29-30.	0.2	O
202	How Many Limnologists Does It Take to Fix the Plumbing? The Established Researcher. Bulletin of the Ecological Society of America, 2017, 98, 100-102.	0.2	0
203	Microbial Carbon Cycling in Pelagic Ecosystems: Microbial Methods for Ecosystem Scientists. , 2000, , 138-150.		0
204	Mirror Lake—Ecologic Interactions. , 1985, , 311-344.		0