
Yonggang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9399133/publications.pdf Version: 2024-02-01

YONCCANE LIANC

#	Article	IF	CITATIONS
1	Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying. Journal of Sol-Gel Science and Technology, 2023, 106, 422-431.	2.4	6
2	Foreign element doping and thermal stability of alumina aerogels. Journal of the American Ceramic Society, 2022, 105, 2288-2299.	3.8	13
3	Excellent antioxidizing, thermally insulating and flame resistance silicaâ€polybenzoxazine aerogels for aircraft ablative materials. Journal of Applied Polymer Science, 2022, 139, .	2.6	10
4	Enhanced Oxygen Vacancies in Ce-Doped SnO2 Nanofibers for Highly Efficient Soot Catalytic Combustion. Catalysts, 2022, 12, 596.	3.5	6
5	Room Temperature Oxalic Acid atalyzed, Ambient Pressure Dried, and Costâ€Effective Synthesis of Polybenzoxazine Aerogels for Thermal Insulation. Advanced Engineering Materials, 2021, 23, 2000856.	3.5	6
6	In situ coâ€polymerization of highâ€performance polybenzoxazine/silica aerogels for flameâ€retardancy and thermal insulation. Journal of Applied Polymer Science, 2021, 138, 50333.	2.6	15
7	Printed aerogels: chemistry, processing, and applications. Chemical Society Reviews, 2021, 50, 3842-3888.	38.1	128
8	Thermally insulating, fiber-reinforced alumina–silica aerogel composites with ultra-low shrinkage up to 1500°C. Chemical Engineering Journal, 2021, 411, 128402.	12.7	119
9	Inhibited radiation transmittance and enhanced thermal stability of silica aerogels under very-high temperature. Ceramics International, 2021, 47, 19824-19834.	4.8	12
10	Facile Preparation of High Strength Silica Aerogel Composites via a Water Solvent System and Ambient Pressure Drying without Surface Modification or Solvent Replacement. Materials, 2021, 14, 3983.	2.9	4
11	Sintering behavior of SiO2 aerogel composites reinforced by mullite fibers via in-situ rapid heating TEM observations. Journal of the European Ceramic Society, 2020, 40, 127-135.	5.7	31
12	Facile synthesis of silica aerogel composites via ambient-pressure drying without surface modification or solvent exchange. Vacuum, 2020, 173, 109117.	3.5	26
13	Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Materials and Design, 2020, 191, 108640.	7.0	59
14	Compressible, Flame-Resistant and Thermally Insulating Fiber-Reinforced Polybenzoxazine Aerogel Composites. Materials, 2020, 13, 2809.	2.9	20
15	A facile method to fabricate monolithic alumina–silica aerogels with high surface areas and good mechanical properties. Journal of the European Ceramic Society, 2020, 40, 2480-2488.	5.7	55
16	Structure, compression and thermally insulating properties of cellulose diacetate-based aerogels. Materials and Design, 2020, 189, 108502.	7.0	27
17	Nanostructure evolution of silica aerogels under rapid heating from 600°C to 1300°C via in-situ TEM observation. Ceramics International, 2020, 46, 12489-12498.	4.8	39
18	Thermally insulating polybenzoxazine aerogels based on 4,4′-diamino-diphenylmethane benzoxazine. Journal of Materials Science, 2019, 54, 12951-12961.	3.7	23

YONGGANG JIANG

#	Article	IF	CITATIONS
19	Polyvinylmethyldimethoxysilane reinforced methyltrimethoxysilane based silica aerogels for thermal insulation with super-high specific surface area. Materials Letters, 2019, 256, 126644.	2.6	5
20	Preparation of monodispersed silica sol with small particle size, narrow size distribution, and high conversion. Journal of Sol-Gel Science and Technology, 2019, 91, 44-53.	2.4	12
21	Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity. Journal of Sol-Gel Science and Technology, 2017, 83, 64-71.	2.4	40
22	Efficient gaseous thermal insulation aerogels from 2-dimension nitrogen-doped graphene sheets. International Journal of Heat and Mass Transfer, 2017, 109, 1026-1030.	4.8	20
23	Formation of enhanced gelatum using ethanol/water binary medium for fabricating chitosan aerogels with high specific surface area. Chemical Engineering Journal, 2017, 309, 700-707.	12.7	59
24	Study on Thermal Conductivities of Aromatic Polyimide Aerogels. ACS Applied Materials & Interfaces, 2016, 8, 12992-12996.	8.0	113
25	Infrared-opacified Al2O3–SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceramics International, 2015, 41, 437-442.	4.8	95