Franck E. Dayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/939903/publications.pdf

Version: 2024-02-01

200 papers

11,031 citations

53 h-index ³⁹⁵⁷⁵ 94

g-index

212 all docs 212 docs citations

times ranked

212

8183 citing authors

#	Article	IF	CITATIONS
1	Natural products in crop protection. Bioorganic and Medicinal Chemistry, 2009, 17, 4022-4034.	1.4	909
2	Natural Products As Sources for New Pesticides. Journal of Natural Products, 2012, 75, 1231-1242.	1.5	457
3	Natural products as sources of herbicides: current status and future trends. Weed Research, 2000, 40, 99-111.	0.8	369
4	Podophyllotoxin. Phytochemistry, 2000, 54, 115-120.	1.4	360
5	Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 2020, 295, 10307-10330.	1.6	329
6	Natural Compounds as Next-Generation Herbicides. Plant Physiology, 2014, 166, 1090-1105.	2.3	270
7	Investigating the Mode of Action of Natural Phytotoxins. Journal of Chemical Ecology, 2000, 26, 2079-2094.	0.9	246
8	Invited Paper:â€,Chemicals from nature for weed management. Weed Science, 2002, 50, 138-151.	0.8	233
9	Allelopathic Effects of Volatile Cineoles on Two Weedy Plant Species. Journal of Chemical Ecology, 2000, 26, 303-313.	0.9	228
10	Mode of Action, Localization of Production, Chemical Nature, and Activity of Sorgoleone: A Potent PSII Inhibitor in Sorghum spp. Root Exudates 1. Weed Technology, 2001, 15, 813-825.	0.4	186
11	The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry, 2002, 60, 281-288.	1.4	166
12	Rationale for a natural products approach to herbicide discovery. Pest Management Science, 2012, 68, 519-528.	1.7	166
13	Natural products as sources for new mechanisms of herbicidal action. Crop Protection, 2000, 19, 583-589.	1.0	152
14	<i>EPSPS</i> gene amplification in glyphosateâ€resistant Italian ryegrass (<i>Lolium perenne</i> ssp.) Tj ETQq0	0	Overlock 10 T
15	Current Status and Future Prospects in Herbicide Discovery. Plants, 2019, 8, 341.	1.6	133
16	Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiology, 2012, 102, 189-197.	1.6	124
17	Searching for Rice Allelochemicals. Agronomy Journal, 2001, 93, 16-20.	0.9	122
18	Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Molecular Ecology, 2004, 13, 3229-3237.	2.0	120

#	Article	IF	CITATIONS
19	Sorgoleone. Phytochemistry, 2010, 71, 1032-1039.	1.4	120
20	Glufosinateâ€ammonium: a review of the current state of knowledge. Pest Management Science, 2020, 76, 3911-3925.	1.7	119
21	A New Photosystem II Electron Transfer Inhibitor from Sorghum bicolor. Journal of Natural Products, 1998, 61, 927-930.	1.5	118
22	Biochemical Markers and Enzyme Assays for Herbicide Mode of Action and Resistance Studies. Weed Science, 2015, 63, 23-63.	0.8	113
23	Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta, 2006, 224, 339-346.	1.6	102
24	p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for \hat{l}^2 -triketones from Leptospermum scoparium. Phytochemistry, 2007, 68, 2004-2014.	1.4	100
25	The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plantp-hydroxyphenylpyruvate dioxygenase. FEBS Letters, 2000, 480, 301-305.	1.3	99
26	Alkylresorcinol Synthases Expressed in <i>Sorghum bicolor</i> Root Hairs Play an Essential Role in the Biosynthesis of the Allelopathic Benzoquinone Sorgoleone Â. Plant Cell, 2010, 22, 867-887.	3.1	97
27	Modes of Action of Microbially-Produced Phytotoxins. Toxins, 2011, 3, 1038-1064.	1.5	96
28	Dynamic root exudation of sorgoleone and its in planta mechanism of action. Journal of Experimental Botany, 2009, 60, 2107-2117.	2.4	94
29	Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry, 1999, 52, 805-813.	1.4	93
30	Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry, 1999, 50, 607-614.	1.4	92
31	A Functional Genomics Investigation of Allelochemical Biosynthesis in Sorghum bicolor Root Hairs. Journal of Biological Chemistry, 2008, 283, 3231-3247.	1.6	88
32	Activity of Quinones onColletotrichumSpecies. Journal of Agricultural and Food Chemistry, 2003, 51, 3824-3828.	2.4	84
33	Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives. European Journal of Medicinal Chemistry, 2009, 44, 492-500.	2.6	83
34	Phytotoxic and Fungitoxic Activities of the Essential Oil of Kenaf (Hibiscus cannabinusL.) Leaves and Its Composition. Journal of Agricultural and Food Chemistry, 2001, 49, 3768-3771.	2.4	80
35	Is (â~)-Catechin a Novel Weapon of Spotted Knapweed (Centaurea stoebe)?. Journal of Chemical Ecology, 2009, 35, 141-153.	0.9	77
36	Composition and Some Biological Activities of the Essential Oil of Callicarpaamericana (L.). Journal of Agricultural and Food Chemistry, 2000, 48, 3008-3012.	2.4	74

#	Article	IF	CITATIONS
37	Inhibition of Plant Asparagine Synthetase by Monoterpene Cineoles. Plant Physiology, 2000, 123, 725-732.	2.3	73
38	Elucidation of the Biosynthetic Pathway of the Allelochemical Sorgoleone Using Retrobiosynthetic NMR Analysis. Journal of Biological Chemistry, 2003, 278, 28607-28611.	1.6	72
39	Selectivity and mode of action of carfentrazone-ethyl, a novel phenyl triazolinone herbicide. Pest Management Science, 1997, 51, 65-73.	0.7	69
40	Manuka Oil, A Natural Herbicide with Preemergence Activity. Weed Science, 2011, 59, 464-469.	0.8	69
41	Chemistry of the Lichen Hypogymnia physodes Transplanted to an Industrial Region. Journal of Chemical Ecology, 2005, 31, 2975-2991.	0.9	68
42	Chromatographic Separation and VitroActivity of Sorgoleone Congeners from the Roots of Sorghum bicolor. Journal of Agricultural and Food Chemistry, 2003, 51, 7589-7595.	2.4	67
43	Reactive oxygen species trigger the fast action of glufosinate. Planta, 2019, 249, 1837-1849.	1.6	67
44	United States Department of Agriculture-Agricultural Research Service research on natural products for pest management. Pest Management Science, 2003, 59, 708-717.	1.7	66
45	Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pesticide Biochemistry and Physiology, 2011, 101, 182-190.	1.6	66
46	The majority of in vitro macrophage activation exhibited by extracts of some immune enhancing botanicals is due to bacterial lipoproteins and lipopolysaccharides. International Immunopharmacology, 2008, 8, 1023-1032.	1.7	65
47	Origins and structure of chloroplastic and mitochondrial plant protoporphyrinogen oxidases: implications for the evolution of herbicide resistance. Pest Management Science, 2018, 74, 2226-2234.	1.7	65
48	Lichens as a potential source of pesticides. Outlooks on Pest Management, 2001, 12, 229-232.	0.2	63
49	Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation. Weed Science, 2019, 67, 149-175.	0.8	62
50	Strategies for Using Transgenes to Produce Allelopathic Crops1. Weed Technology, 2001, 15, 826-834.	0.4	61
51	High Yield of Podophyllotoxin from Leaves of Podophyllum peltatum by In situ Conversion of Podophyllotoxin 4-O-l²-D-Glucopyranoside. Planta Medica, 2001, 67, 97-99.	0.7	60
52	Herbicides as Probes in Plant Biology. Weed Science, 2010, 58, 340-350.	0.8	58
53	Metabolic Profiling and Enzyme Analyses Indicate a Potential Role of Antioxidant Systems in Complementing Glyphosate Resistance in an <i>Amaranthus palmeri</i> Biotype. Journal of Agricultural and Food Chemistry, 2015, 63, 9199-9209.	2.4	58
54	Aryltetralin Lignans Inhibit Plant Growth by Affecting the Formation of Mitotic Microtubular Organizing Centers. Pesticide Biochemistry and Physiology, 2002, 72, 45-54.	1.6	57

#	Article	IF	CITATIONS
55	Biochemical and structural consequences of a glycine deletion in the α-8 helix of protoporphyrinogen oxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1548-1556.	1.1	57
56	Postemergence Activity of Sulfentrazone: Effects of Surfactants and Leaf Surfaces. Weed Science, 1996, 44, 797-803.	0.8	56
57	Reversing resistance to tembotrione in an <scp><i>Amaranthus tuberculatus</i></scp> (var.) Tj ETQq1 1 0.7843 Science, 2018, 74, 2296-2305.	314 rgBT / 1.7	Overlock 10 56
58	ACCase-inhibiting herbicides: mechanism of action, resistance evolution and stewardship. Scientia Agricola, 2021, 78, .	0.6	54
59	Concerted action of targetâ€site mutations and high <scp>EPSPS</scp> activity in glyphosateâ€resistant junglerice (<i>Echinochloa colona</i>) from California. Pest Management Science, 2015, 71, 996-1007.	1.7	53
60	Physiological Basis for Differential Sensitivity to Sulfentrazone by Sicklepod (<i>Senna) Tj ETQq0 0 0 rgBT /Overl</i>	ock 10 Tf	50,542 Td (o
61	Composition of the essential oil of Lepidium meyenii (Walp.). Phytochemistry, 2002, 61, 149-155.	1.4	52
62	Melanin: dietary mucosal immune modulator from Echinacea and other botanical supplements. International Immunopharmacology, 2005, 5, 637-647.	1.7	50
63	Protoporphyrinogen Oxidase-Inhibiting Herbicides. , 2010, , 1733-1751.		50
64	Amicarbazone, a New Photosystem II Inhibitor. Weed Science, 2009, 57, 579-583.	0.8	49
65	Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Management Science, 2014, 70, 252-257.	1.7	49
66	The search for new herbicide mechanisms of action: Is there a †holy grail'?. Pest Management Science, 2022, 78, 1303-1313.	1.7	49
67	Evolution of resistance to phytoene desaturase and protoporphyrinogen oxidase inhibitors–Âstate of knowledge. Pest Management Science, 2014, 70, 1358-1366.	1.7	47
68	Effects of Isoxazole Herbicides on Protoporphyrinogen Oxidase and Porphyrin Physiology. Journal of Agricultural and Food Chemistry, 1997, 45, 967-975.	2.4	46
69	<i>In planta</i>) production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and <i>O</i>)â€methyltransferase coâ€expression. Plant Biotechnology Journal, 2012, 10, 269-283.	4.1	46
70	Phytotoxicity of Quassinoids: Physiological Responses and Structural Requirements. Pesticide Biochemistry and Physiology, 1999, 65, 15-24.	1.6	45
71	Allelopathic Potential of Sorghum (Sorghum bicolor (L.) Moench) in Weed Control: A Comprehensive Review. Advances in Agronomy, 2017, 145, 43-95.	2.4	45
72	Role of Glutamine Synthetase Isogenes and Herbicide Metabolism in the Mechanism of Resistance to Glufosinate in <i>Lolium perenne</i> L. spp. <i>multiflorum</i> Biotypes from Oregon. Journal of Agricultural and Food Chemistry, 2019, 67, 8431-8440.	2.4	45

#	Article	IF	CITATIONS
73	Molecular evolution of herbicide resistance to phytoene desaturase inhibitors inHydrilla verticillata and its potential use to generate herbicide-resistant crops. Pest Management Science, 2005, 61, 258-268.	1.7	44
74	Characterization of a higher plant herbicide-resistant phytoene desaturase and its use as a selectable marker. Plant Biotechnology Journal, 2006, 4, 263-273.	4.1	44
75	Biosynthesis of salvinorin A proceeds via the deoxyxylulose phosphate pathway. Phytochemistry, 2007, 68, 1872-1881.	1.4	44
76	Mineralization of the allelochemical sorgoleone in soil. Chemosphere, 2009, 76, 1041-1047.	4.2	43
77	Alkylresorcinol biosynthesis in plants. Plant Signaling and Behavior, 2010, 5, 1286-1289.	1.2	43
78	Khellin and Visnagin, Furanochromones from <i>Ammi visnaga</i> (L.) Lam., as Potential Bioherbicides. Journal of Agricultural and Food Chemistry, 2016, 64, 9475-9487.	2.4	43
79	Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri. Planta, 2014, 239, 199-212.	1.6	42
80	Phytotoxicity and volatile constituents from leaves of Callicarpa japonica Thunb Phytochemistry, 2002, 61, 37-40.	1.4	41
81	A Pathogenic Fungi Diphenyl Ether Phytotoxin Targets Plant Enoyl (Acyl Carrier Protein) Reductase. Plant Physiology, 2008, 147, 1062-1071.	2.3	41
82	Joint action of natural and synthetic photosystem II inhibitors. Pest Management Science, 1999, 55, 137-146.	0.7	40
83	Behavior of sulfentrazone in ionic exchange resins, electrophoresis gels, and cation-saturated soils. Weed Science, 2000, 48, 239-247.	0.8	40
84	In planta Mechanism of Action of Leptospermone: Impact of Its Physico-Chemical Properties on Uptake, Translocation, and Metabolism. Journal of Chemical Ecology, 2013, 39, 262-270.	0.9	40
85	Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action. Frontiers in Plant Science, 2015, 6, 222.	1.7	38
86	Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs. Journal of Experimental Botany, 2007, 58, 3263-3272.	2.4	37
87	PSII Inhibitory Activity of Resorcinolic Lipids from Sorghum bicolor. Journal of Natural Products, 2003, 66, 42-45.	1.5	36
88	Validation of serine/threonine protein phosphatase as the herbicide target site of endothall. Pesticide Biochemistry and Physiology, 2012, 102, 38-44.	1.6	36
89	A novel genomic approach to herbicide and herbicide mode of action discovery. Pest Management Science, 2019, 75, 314-317.	1.7	36
90	<i>EPSPS</i> Gene Amplification in Glyphosate-Resistant Italian Ryegrass (<i>Lolium perenne</i> ssp.) Tj ETQc Chemistry, 2015, 63, 5885-5893.	0 0 0 rgBT 2.4	/Overlock 10 T 35

Chemistry, 2015, 63, 5885-5893.

#	Article	IF	CITATIONS
91	Patterns of essential oil relationships in Pimpinella (Umbelliferae) based on phylogenetic relationships using nuclear and chloroplast sequences. Plant Genetic Resources: Characterisation and Utilisation, 2005, 3, 149-169.	0.4	34
92	\hat{l}^2 -Triketone Inhibitors of Plant <i>p</i> -Hydroxyphenylpyruvate Dioxygenase: Modeling and Comparative Molecular Field Analysis of Their Interactions. Journal of Agricultural and Food Chemistry, 2009, 57, 5194-5200.	2.4	34
93	Low doses of glyphosate change the responses of soyabean to subsequent glyphosate treatments. Weed Research, 2016, 56, 124-136.	0.8	34
94	Phytotoxic lignans of Leucophyllum frutescens. Natural Toxins, 1999, 7, 39-43.	1.0	33
95	Inhibitory Activity of Sulfentrazone and Its Metabolic Derivatives on Soybean (Glycine max) Protoporphyrinogen Oxidase. Journal of Agricultural and Food Chemistry, 1998, 46, 2024-2029.	2.4	32
96	Discovery for New Herbicide Sites of Action by Quantification of Plant Primary Metabolite and Enzyme Pools. Engineering, 2020, 6, 509-514.	3.2	32
97	Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pesticide Biochemistry and Physiology, 2011, 100, 41-50.	1.6	31
98	Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils. Frontiers in Microbiology, 2016, 7, 775.	1.5	31
99	Glufosinate enhances the activity of protoporphyrinogen oxidase inhibitors. Weed Science, 2020, 68, 324-332.	0.8	31
100	Trichomes and root hairs: natural pesticide factories. Outlooks on Pest Management, 2003, 14, 175.	0.2	30
101	A novel insight into the mode of action of glufosinate: how reactive oxygen species are formed. Photosynthesis Research, 2020, 144, 361-372.	1.6	30
102	Metabolism-Based Herbicide Resistance, the Major Threat Among the Non-Target Site Resistance Mechanisms. Outlooks on Pest Management, 2020, 31, 162-168.	0.1	30
103	Phytotoxic Eremophilanes from Ligularia macrophylla. Journal of Agricultural and Food Chemistry, 2007, 55, 10656-10663.	2.4	29
104	Natural Products for Weed Management in Organic Farming in the USA. Outlooks on Pest Management, 2010, 21, 156-160.	0.1	28
105	A (\hat{a} e")-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. Journal of Experimental Botany, 2017, 68, 1109-1122.	2.4	28
106	A cytochrome P450 <scp>CYP</scp> 71 enzyme expressed in <i>Sorghum bicolor</i> root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. New Phytologist, 2018, 218, 616-629.	3.5	28
107	Assessment of the ecotoxicological impact of natural and synthetic \hat{l}^2 -triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Science of the Total Environment, 2019, 651, 241-249.	3.9	28
108	Cinmethylin controls multiple herbicideâ€resistant <i>Lolium rigidum</i> and its wheat selectivity is P450â€based. Pest Management Science, 2020, 76, 2601-2608.	1.7	28

#	Article	IF	CITATIONS
109	Simulated Acid Rain Accelerates Litter Decomposition and Enhances the Allelopathic Potential of the Invasive Plant <i>Wedelia trilobata</i> (Creeping Daisy). Weed Science, 2012, 60, 462-467.	0.8	27
110	Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Applied Microbiology and Biotechnology, 2014, 98, 7243-7252.	1.7	27
111	Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink® and WideStrike® cotton. Planta, 2016, 243, 925-933.	1.6	27
112	Nortriketones: Antimicrobial Trimethylated Acylphloroglucinols from Malnuka (<i>Leptospermum) Tj ETQq0 0</i>	0 rgBT /O	verlock 10 Tf
113	Trp2027Cys mutation evolves in Digitaria insularis with cross-resistance to ACCase inhibitors. Pesticide Biochemistry and Physiology, 2020, 164, 1-6.	1.6	27
114	Biological Activity of Allelochemicals. , 2009, , 361-384.		26
115	Tabanone, a New Phytotoxic Constituent of Cogongrass (<i>Imperata cylindrica</i>). Weed Science, 2012, 60, 212-218.	0.8	26
116	Assessing Fitness Costs from a Herbicide-Resistance Management Perspective: A Review and Insight. Weed Science, 2019, 67, 137-148.	0.8	26
117	A novel TIPT double mutation in <i>EPSPS</i> conferring glyphosate resistance in tetraploid <i>Bidens subalternans</i> . Pest Management Science, 2020, 76, 95-102.	1.7	26
118	Porphyrins: One Ring in the Colors of Life. American Scientist, 2011, 99, 236.	0.1	26
119	Amino- and Urea-Substituted Thiazoles Inhibit Photosynthetic Electron Transfer. Journal of Agricultural and Food Chemistry, 2000, 48, 3689-3693.	2.4	25
120	Proline-106 EPSPS Mutation Imparting Glyphosate Resistance in Goosegrass (<i>Eleusine indica</i> Emerges in South America. Weed Science, 2019, 67, 48-56.	0.8	25
121	Arbuscular mycorrhiza improves acclimatization and increases lignan content of micropropagated mayapple (Podophyllum peltatum L.). Plant Science, 2004, 166, 23-29.	1.7	24
122	Possible Glyphosate Tolerance Mechanism in Pitted Morningglory (<i>lpomoea lacunosa</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 1689-1697.	2.4	24
123	The Sorghum bicolor Root Exudate Sorgoleone Shapes Bacterial Communities and Delays Network Formation. MSystems, 2021, 6, .	1.7	23
124	Structural Diversity of Lichen Metabolites and Their Potential Use., 2002,, 151-169.		23
125	9,10â€Anthraquinone Reduces the Photosynthetic Efficiency ofOscillatoria perornataand Modifies Cellular Inclusions. International Journal of Plant Sciences, 2000, 161, 265-270.	0.6	22
126	Physiological factors influencing the antifungal activity of zopfiellin. Pesticide Biochemistry and Physiology, 2002, 73, 87-93.	1.6	22

#	Article	IF	CITATIONS
127	Physiological basis for resistance to diphenyl ether herbicides in common waterhemp (Amaranthus) Tj ETQq1 10.	784314 rg	gBT/Overlock
128	Herbicide Mechanisms of Action and Resistance. , 2019, , 36-48.		22
129	Thiol-dependent degradation of protoporphyrin IX by plant peroxidases. FEBS Letters, 1999, 444, 227-230.	1.3	21
130	The lignans of Podophyllum. Studies in Natural Products Chemistry, 2002, 26, 149-182.	0.8	21
131	Molluscicidal activity of vulgarone B fromArtemisia douglasiana (Besser) against the invasive, alien, mollusc pest,Pomacea canaliculata (Lamarck). International Journal of Pest Management, 2005, 51, 175-180.	0.9	21
132	The case against (–)-catechin involvement in allelopathy of <i>Centaurea stoebe</i> (spotted) Tj ETQq0 0 0 rgB	Г /Oyerloch	R 10 Tf 50 54
133	Photolysis of natural Î ² -triketonic herbicides inÂwater. Water Research, 2015, 78, 28-36.	5.3	20
134	Environmental Metabolic Footprinting: A novel application to study the impact of a natural and a synthetic \hat{l}^2 -triketone herbicide in soil. Science of the Total Environment, 2016, 566-567, 552-558.	3.9	19
135	An in-frame deletion mutation in the degron tail of auxin coreceptor <i>IAA2</i> confers resistance to the herbicide 2,4-D in <i>Sisymbrium orientale</i> the United States of America, 2022, 119, .	3.3	19
136	Measuring Asparagine Synthetase Activity in Crude Plant Extracts. Journal of Agricultural and Food Chemistry, 2000, 48, 1692-1696.	2.4	18
137	Glyphosate-Resistant and Conventional Canola (<i>Brassica napus</i> L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment. Journal of Agricultural and Food Chemistry, 2016, 64, 3508-3513.	2.4	18
138	Interactions Between Natural Herbicides and Lipid Bilayers Mimicking the Plant Plasma Membrane. Frontiers in Plant Science, 2019, 10, 329.	1.7	18
139	Synthesis and antitubercular activity of heterocycle substituted diphenyl ether derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 730-736.	2.5	17
140	Oxidation of Porphyrinogens by Horseradish Peroxidase and Formation of a Green Pyrrole Pigment. Biochemical and Biophysical Research Communications, 1996, 227, 195-199.	1.0	16
141	Composition and Phytotoxic Activity of Nepeta pannonical. Essential Oil. Journal of Essential Oil Research, 2005, 17, 704-707.	1.3	16
142	Clues to New Herbicide Mechanisms of Action from Natural Sources. ACS Symposium Series, 2013, , 203-215.	0.5	16
143	Discovery of New Herbicide Modes of Action with Natural Phytotoxins. ACS Symposium Series, 2015, , 79-92.	0.5	16
144	Pesticides Modes of Action and Resistance: A Perspective from the 2019 IUPAC Congress. Outlooks on Pest Management, 2019, 30, 157-163.	0.1	16

#	Article	IF	CITATIONS
145	Fate of Glyphosate during Production and Processing of Glyphosate-Resistant Sugar Beet (<i>Beta) Tj ETQq1 1 (</i>	0.784314 2.4	rgBT ₁₅ /Overlock
146	Arg-128-Leu target-site mutation in <i>PPO2</i> evolves in wild poinsettia (<i>Euphorbia) Tj ETQq0 0 0 rgBT /Ov</i>	verlock 10	Tf 50 702 Td
147	Novel Bioassay for the Discovery of Inhibitors of the 2-C-Methyl-D-erythritol 4-Phosphate (MEP) and Terpenoid Pathways Leading to Carotenoid Biosynthesis. PLoS ONE, 2014, 9, e103704.	1.1	15
148	BIOCONTROL OF WEEDS WITH ALLELOPATHY: CONVENTIONAL AND TRANSGENIC APPROACHES. , 2007, , 75-85.		14
149	Physiological Factors Affecting Uptake and Translocation of Glufosinate. Journal of Agricultural and Food Chemistry, 2020, 68, 3026-3032.	2.4	14
150	Horseradish Peroxidase-Dependent Oxidation of Deuteroporphyrin IX into Chlorins. Archives of Biochemistry and Biophysics, 1998, 351, 27-34.	1.4	13
151	Predicting the activity of the natural phytotoxic diphenyl ether cyperine using Comparative Molecular Field Analysis. Pest Management Science, 2000, 56, 717-722.	1.7	13
152	Synthesis, Herbicidal Activity, and Mode of Action of IR 5790. Journal of Agricultural and Food Chemistry, 2001, 49, 2302-2307.	2.4	13
153	Hydrilla, the Perfect Aquatic Weed, Becomes More Noxious Than Ever. Outlooks on Pest Management, 2005, 16, 277-282.	0.1	13
154	Podophyllum peltatum possesses aÂβ-glucosidase with high substrate specificity for the aryltetralin lignan podophyllotoxin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1646, 157-163.	1.1	12
155	Generation of reactive oxygen species by a novel anthraquinone derivative in the cyanobacterium Planktothrix perornata (Skuja). Pesticide Biochemistry and Physiology, 2005, 81, 198-207.	1.6	12
156	The influence of winter annual grass litter on herbicide availability. Weed Science, 2019, 67, 702-709.	0.8	12
157	The Contribution of Romidepsin to the Herbicidal Activity of (i>Burkholderia rinojensis (i>Biopesticide. Journal of Natural Products, 2020, 83, 843-851.	1.5	12
158	Roots of the Invasive Species Carduus nutans L. and C. acanthoides L. Produce Large Amounts of Aplotaxene, a Possible Allelochemical. Journal of Chemical Ecology, 2014, 40, 276-284.	0.9	11
159	A Trp574Leu Target-Site Mutation Confers Imazamox Resistance in Multiple Herbicide-Resistant Wild Poinsettia Populations from Brazil. Agronomy, 2020, 10, 1057.	1.3	11
160	Clues in the search for new herbicides. , 2006, , 63-83.		11
161	Is There a Natural Route to the Next Generation of Herbicides?. Outlooks on Pest Management, 2018, 29, 54-57.	0.1	11
162	A New Photosystem II Electron Transfer Inhibitor fromSorghum Bicolor. Journal of Natural Products, 1998, 61, 1456-1456.	1.5	10

#	Article	IF	Citations
163	Oligofructans content and yield of yacon (Smallanthus sonchifolius) cultivated in Mississippi. Scientia Horticulturae, 2012, 148, 83-88.	1.7	10
164	Insight into the Structural Requirements of Protoporphyrinogen Oxidase Inhibitors: Molecular Docking and CoMFA of Diphenyl Ether, Isoxazole Phenyl, and Pyrazole Phenyl Ether. Chinese Journal of Chemistry, 2013, 31, 1153-1158.	2.6	10
165	Bioactivation of the Fungal Phytotoxin 2,5-Anhydro-D-glucitol by Glycolytic Enzymesisan Essential Component of itsMechanism of Action. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 645-653.	0.6	9
166	The potential for advances in crop allelopathy. Outlooks on Pest Management, 2005, 16, 64-68.	0.1	9
167	Structure-Activity Relationships of Diphenyl Ethers and Other Oxygen-Bridged Protoporphyrinogen Oxidase Inhibitors. , 1999, , 141-161.		9
168	Chapter Twelve Crop Allelopathy: Enhancement through biotechnology. Recent Advances in Phytochemistry, 2001, , 257-274.	0.5	8
169	The Growing Need for Biochemical Bioherbicides. ACS Symposium Series, 2014, , 31-43.	0.5	8
170	Predicting herbicide movement across semi-permeable membranes using three phase partitioning. Pesticide Biochemistry and Physiology, 2019, 159, 22-26.	1.6	8
171	Transgenerational Effect of Drought Stress and Sub-Lethal Doses of Quizalofop-p-ethyl: Decreasing Sensitivity to Herbicide and Biochemical Adjustment in Eragrostis plana. Agriculture (Switzerland), 2022, 12, 396.	1.4	8
172	Glutathione-Dependent Oxidative Modification of Protoporphyrin and Other Dicarboxylic Porphyrins by Mammalian and Plant Peroxidases. Biochemical and Biophysical Research Communications, 1999, 259, 195-200.	1.0	7
173	A Functional Genomics Approach for the Identification of Genes Involved in the Biosynthesis of the Allelochemical Sorgoleone. ACS Symposium Series, 2006, , 265-276.	0.5	7
174	Biochemical and structural characterization of quizalofop-resistant wheat acetyl-CoA carboxylase. Scientific Reports, 2022, 12, 679.	1.6	7
175	Octan-1-ol / Water Partition Coefficients of <i>p</i> -benzo-and <i>p</i> -naphthoquinones corrected for pH effect. Journal of Chemical Research, 2002, 2002, 518-519.	0.6	6
176	Natural Product-Based Chemical Herbicides. , 2018, , 153-165.		6
177	Evolution of EPSPS double mutation imparting glyphosate resistance in wild poinsettia (Euphorbia) Tj ETQq1 1 C).784314 r 1.1	gBŢ /Overloc
178	Conformation of the Intermediates in the Reaction Catalyzed by Protoporphyrinogen Oxidase: An In Silico Analysis. International Journal of Molecular Sciences, 2020, 21, 9495.	1.8	5
179	Biochemical Basis for the Time-of-Day Effect on Glufosinate Efficacy against Amaranthus palmeri. Plants, 2021, 10, 2021.	1.6	5
180	Low Temperature Delays Metabolism of Quizalofop in Resistant Winter Wheat and Three Annual Grass Weed Species. Frontiers in Agronomy, 2022, 3, .	1.5	5

#	Article	IF	CITATIONS
181	Chemical Basis for Weed Suppressive Activity of Sorghum. ACS Symposium Series, 2005, , 59-70.	0.5	4
182	Absorption and Metabolism of Foliar-Applied Rimsulfuron in Potato (Solanum tuberosum L.), Common Lambsquarters (Chenopodium album L.) and Redroot Pigweed (Amaranthus retroflexus L.). Potato Research, 2021, 64, 635-648.	1.2	4
183	The Source of Rag5-Mediated Resistance to Soybean Aphids Is Located in the Stem. Frontiers in Plant Science, 2021, 12, 689986.	1.7	4
184	Sorghum Allelopathy for Sustainable Weed Management. Progress in Biological Control, 2020, , 263-288.	0.5	4
185	The Coaxium [®] Wheat Production System: A New Herbicide-Resistant System for Annual Grass Weed Control and Integrated Weed Management. Outlooks on Pest Management, 2021, 32, 151-157.	0.1	4
186	New Herbicide Target Sites from Natural Compounds. ACS Symposium Series, 2004, , 151-160.	0.5	3
187	Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural Î ² -triketone herbicide. Environmental Science and Pollution Research, 2018, 25, 29848-29859.	2.7	3
188	Conservation and divergence in sorgoleone production of sorghum species. Journal of Environmental Quality, 2020, 49, 368-377.	1.0	3
189	Phytochemicals for Pest Management: Current Advances and Future Opportunities. , 2013, , 71-94.		3
190	NATURAL PRODUCTS FOR PEST MANAGEMENT. , 2007, , 209-251.		2
191	Protoporphyrinogen Oxidase Inhibitors. , 2001, , 1529-1541.		2
192	Bioactivation of the fungal phytotoxin 2,5-anhydro-D-glucitol by glycolytic enzymes is an essential component of its mechanism of action. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 645-53.	0.6	2
193	Molecular and Biochemical Investigations of Sorgoleone Biosynthesis. Recent Advances in Phytochemistry, 2006, 40, 157-177.	0.5	1
194	Molecular and Biochemical Characterization of Novel Polyketide Synthases Likely to Be Involved in the Biosynthesis of Sorgoleone. ACS Symposium Series, 2007, , 141-151.	0.5	1
195	Introduction to Pest Management Science special issue for GHRC 2017. Pest Management Science, 2018, 74, 2209-2210.	1.7	1
196	Field Response of Green Ash (Fraxinus pennsylvanica) and Honey Locust (Gleditsia triacanthos) to Aminocyclopyrachlor1. Journal of Environmental Horticulture, 2021, 39, 68-76.	0.3	1
197	Evaluation of the toxicity of Streptomyces aburaviensis (R9) extract towards various agricultural pests. Agricultural Sciences, 2011, 02, 491-497.	0.2	1
198	<scp>2,4â€D</scp> and <scp>2,4â€D</scp> butoxyethyl ester behavior in <scp>E</scp> urasian and hybrid watermilfoil (<i>Myriophyllum</i> spp.). Pest Management Science, 2022, 78, 626-632.	1.7	1

#	Article	IF	CITATIONS
199	Natural Phytotoxins with Potential for Development in Weed Management Strategies. , 0, , 143-154.		O
200	Introduction to the Symposium on Nonherbicide Use of Herbicides. Weed Science, 2010, 58, 323-323.	0.8	0