Haijie Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9398967/publications.pdf

Version: 2024-02-01

33	1,675	17 h-index	33
papers	citations		g-index
33	33	33	1951 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Porous carbon matrix-encapsulated MnO in situ derived from metal-organic frameworks as advanced anode materials for Li-ion capacitors. Science China Materials, 2022, 65, 59-68.	6.3	21
2	A New Sodium Calcium Cyclotetravanadate Framework: "Zeroâ€Strain―during Largeâ€Capacity Lithium Intercalation. Advanced Functional Materials, 2022, 32, 2105026.	14.9	30
3	Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction reaction in acidic medium. Chemical Engineering Journal, 2022, 431, 133237.	12.7	33
4	Simulation degradation of bromophenolic compounds in chlorine-based advanced oxidation processes: Mechanism, microscopic and apparent kinetics, and toxicity assessment. Chemosphere, 2022, 291, 133034.	8.2	4
5	Facile Fabrication of Highly Hydrophobic Onion-like Candle Soot-Coated Mesh for Durable Oil/Water Separation. Nanomaterials, 2022, 12, 761.	4.1	9
6	Spatially Confined "Edgeâ€ŧoâ€Edge―Strategy for Achieving Compact Na ⁺ /K ⁺ Storage: Constructing Heteroâ€Ni/Ni ₃ S ₂ in Densified Carbons. Advanced Functional Materials, 2022, 32, .	14.9	23
7	Reactivity of aromatic contaminants towards nitrate radical in tropospheric gas and aqueous phase. Journal of Hazardous Materials, 2021, 401, 123396.	12.4	9
8	Catalytic mechanism and pathways of 1, 2-dichloropropane oxidation over LaMnO3 perovskite: An experimental and DFT study. Journal of Hazardous Materials, 2021, 402, 123473.	12.4	42
9	Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors. Chemical Engineering Journal, 2021, 405, 126928.	12.7	99
10	The roles of HO•, ClO• and BrO• radicals in caffeine degradation: A theoretical study. Science of the Total Environment, 2021, 768, 144733.	8.0	31
11	Acetaminophen degradation by hydroxyl and organic radicals in the peracetic acid-based advanced oxidation processes: Theoretical calculation and toxicity assessment. Journal of Hazardous Materials, 2021, 416, 126250.	12.4	17
12	Quantum chemical study on \hat{A} -Cl-initiated degradation of ethyl vinyl ether in atmosphere. Molecular Physics, 2020, 118, e1676475.	1.7	1
13	Tuning Pt-skinned PtAg nanotubes in nanoscales to efficiently modify electronic structure for boosting performance of methanol electrooxidation. Applied Catalysis B: Environmental, 2020, 265, 118606.	20.2	83
14	Theoretical insight into the degradation of p-nitrophenol by OH radicals synergized with other active oxidants in aqueous solution. Journal of Hazardous Materials, 2020, 389, 121901.	12.4	62
15	Theoretical investigation on the contribution of HO , SO4- and CO3- radicals to the degradation of phenacetin in water: Mechanisms, kinetics, and toxicity evaluation. Ecotoxicology and Environmental Safety, 2020, 204, 110977.	6.0	18
16	Highly Active Gas Phase Organometallic Catalysis Supported Within Metal–Organic Framework Pores. Journal of the American Chemical Society, 2020, 142, 13533-13543.	13.7	43
17	Synthesis of a zinc ferrite effectively encapsulated by reduced graphene oxide composite anode material for high-rate lithium ion storage. Journal of Colloid and Interface Science, 2020, 579, 723-732.	9.4	21
18	Citrate-mediated synthesis of highly crystalline transition metal hexacyanoferrates and their Na ion storage properties. Applied Surface Science, 2020, 531, 147336.	6.1	5

#	Article	IF	Citations
19	The role of oxygen vacancies of ABO ₃ perovskite oxides in the oxygen reduction reaction. Energy and Environmental Science, 2020, 13, 1408-1428.	30.8	477
20	N-doping activated defective Co3O4 as an efficient catalyst for low-temperature methane oxidation. Applied Catalysis B: Environmental, 2020, 269, 118757.	20.2	85
21	Hollow La0.5Sr0.5MnO3 nanospheres as an electrocatalyst for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 12514-12524.	7.1	7
22	Synthesis of amorphous nickel–cobalt–manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Materials, 2019, 17, 194-203.	18.0	236
23	Quantum chemical study on isomerization and transformation of hexabromocyclododecanes. Structural Chemistry, 2019, 30, 899-910.	2.0	2
24	Sea-urchin-like nickel–cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6241-6249.	10.3	186
25	Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. Journal of Materials Chemistry A, 2019, 7, 25537-25547.	10.3	63
26	Computational study on the mechanism and kinetics of NO3-initiated atmosphere oxidation of vinyl acetate. Computational and Theoretical Chemistry, 2018, 1144, 18-25.	2.5	11
27	Computational study on the mechanism and kinetics of Cl-initiated oxidation of ethyl acrylate. Structural Chemistry, 2017, 28, 1831-1842.	2.0	7
28	Mechanistic and kinetic investigation on OH-initiated oxidation of tetrabromobisphenol A. Chemosphere, 2016, 153, 262-269.	8.2	6
29	Theoretical study on the nitrate radical oxidation of methyl vinyl ether. Computational and Theoretical Chemistry, 2015, 1072, 72-78.	2.5	2
30	Computational Study on the Mechanisms and Rate Constants of the Cl-Initiated Oxidation of Methyl Vinyl Ether in the Atmosphere. Journal of Physical Chemistry A, 2015, 119, 719-727.	2.5	13
31	Computational study on the mechanisms and rate constants of the OH-initiated oxidation of ethyl vinyl ether in atmosphere. Chemosphere, 2014, 111, 61-69.	8.2	8
32	Computational study on the mechanism and kinetics of Cl-initiated oxidation of vinyl acetate. Atmospheric Environment, 2014, 94, 63-73.	4.1	11
33	Mechanistic and kinetic study of the gas-phase reaction of vinyl acetate with ozone. Atmospheric Environment, 2012, 49, 197-205.	4.1	10