
## **Ryan R Davies**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9398856/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size.<br>Annals of Thoracic Surgery, 2002, 73, 17-28.                                                                                                     | 0.7 | 891       |
| 2  | Novel Measurement of Relative Aortic Size Predicts Rupture of Thoracic Aortic Aneurysms. Annals of Thoracic Surgery, 2006, 81, 169-177.                                                                                                                | 0.7 | 493       |
| 3  | Familial Thoracic Aortic Aneurysms and Dissections—Incidence, Modes of Inheritance, and Phenotypic<br>Patterns. Annals of Thoracic Surgery, 2006, 82, 1400-1405.                                                                                       | 0.7 | 410       |
| 4  | Familial Patterns of Thoracic Aortic Aneurysms. Archives of Surgery, 1999, 134, 361.                                                                                                                                                                   | 2.3 | 288       |
| 5  | Natural History of Ascending Aortic Aneurysms in the Setting of an Unreplaced Bicuspid Aortic Valve.<br>Annals of Thoracic Surgery, 2007, 83, 1338-1344.                                                                                               | 0.7 | 282       |
| 6  | The effect of ischemic time on survival after heart transplantation varies by donor age: An analysis of<br>the United Network for Organ Sharing database. Journal of Thoracic and Cardiovascular Surgery,<br>2007, 133, 554-559.                       | 0.4 | 229       |
| 7  | Listing and Transplanting Adults With Congenital Heart Disease. Circulation, 2011, 123, 759-767.                                                                                                                                                       | 1.6 | 159       |
| 8  | Outcomes after transplantation for "failed―Fontan: A single-institution experience. Journal of<br>Thoracic and Cardiovascular Surgery, 2012, 143, 1183-1192.e4.                                                                                        | 0.4 | 130       |
| 9  | Trends and Outcomes in Transplantation for Complex Congenital Heart Disease: 1984 to 2004. Annals of Thoracic Surgery, 2004, 78, 1352-1361.                                                                                                            | 0.7 | 121       |
| 10 | High Lung Allocation Score Is Associated With Increased Morbidity and Mortality Following Transplantation. Chest, 2010, 137, 651-657.                                                                                                                  | 0.4 | 119       |
| 11 | A change of heart: Preliminary results of the US 2018 adult heart allocation revision. American<br>Journal of Transplantation, 2020, 20, 2781-2790.                                                                                                    | 2.6 | 113       |
| 12 | The Effect of Body Mass Index on Survival Following Heart Transplantation. Annals of Surgery, 2010, 251, 144-152.                                                                                                                                      | 2.1 | 107       |
| 13 | Standard versus bicaval techniques for orthotopic heart transplantation: An analysis of the United<br>Network for Organ Sharing database. Journal of Thoracic and Cardiovascular Surgery, 2010, 140,<br>700-708.e2.                                    | 0.4 | 99        |
| 14 | Association of Pulmonary Conduit Type and Size With Durability in Infants and Young Children.<br>Annals of Thoracic Surgery, 2013, 96, 1695-1702.                                                                                                      | 0.7 | 96        |
| 15 | The use of mechanical circulatory support as a bridge to transplantation in pediatric patients: An<br>analysis of the United Network for Organ Sharing database. Journal of Thoracic and Cardiovascular<br>Surgery, 2008, 135, 421-427.e1.             | 0.4 | 95        |
| 16 | Stroke in surgery of the thoracic aorta: Incidence, impact, etiology, and prevention. Journal of<br>Thoracic and Cardiovascular Surgery, 2001, 122, 935-945.                                                                                           | 0.4 | 88        |
| 17 | Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients<br>and patients with congenital heart disease: A multicenter registry analysis. Journal of Heart and Lung<br>Transplantation, 2020, 39, 573-579. | 0.3 | 83        |
| 18 | Who is the high-risk recipient? Predicting mortality after lung transplantation using pretransplant risk factors. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 1234-1238.e1.                                                             | 0.4 | 74        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Predicting survival among high-risk pediatric cardiac transplant recipients: An analysis of the United<br>Network for Organ Sharing database. Journal of Thoracic and Cardiovascular Surgery, 2008, 135,<br>147-155.e2.                 | 0.4 | 68        |
| 20 | Posttransplant survival is not diminished in heart transplant recipients bridged with implantable left ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 1425-1432.e3.                             | 0.4 | 68        |
| 21 | Interval or Permanent Nonoperative Management of Acute Type A Aortic Dissection. Archives of Surgery, 1999, 134, 402.                                                                                                                   | 2.3 | 67        |
| 22 | Bilateral pulmonary arterial banding results in an increased need for subsequent pulmonary artery interventions. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 706-712.                                                    | 0.4 | 67        |
| 23 | Outcomes of children supported with devices labeled as "temporary―or short term: A report from<br>the Pediatric Interagency Registry for Mechanical Circulatory Support. Journal of Heart and Lung<br>Transplantation, 2018, 37, 54-60. | 0.3 | 67        |
| 24 | Longitudinal Assessment of Growth in Hypoplastic Left Heart Syndrome: Results From the Single<br>Ventricle Reconstruction Trial. Journal of the American Heart Association, 2014, 3, e000079.                                           | 1.6 | 63        |
| 25 | Fifth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report.<br>Annals of Thoracic Surgery, 2021, 112, 1763-1774.                                                                                  | 0.7 | 63        |
| 26 | Post–Heart Transplant Survival Is Inferior at Low-Volume Centers Across All Risk Strata. Circulation, 2010, 122, S85-91.                                                                                                                | 1.6 | 59        |
| 27 | Predictive value of perioperative near-infrared spectroscopy for neurodevelopmental outcomes after cardiac surgery in infancy. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 438-445.e1.                                   | 0.4 | 59        |
| 28 | ISHLT consensus statement on donor organ acceptability and management in pediatric heart transplantation. Journal of Heart and Lung Transplantation, 2020, 39, 331-341.                                                                 | 0.3 | 56        |
| 29 | Matching High-Risk Recipients With Marginal Donor Hearts Is a Clinically Effective Strategy. Annals of Thoracic Surgery, 2009, 87, 1066-1071.                                                                                           | 0.7 | 55        |
| 30 | Worldwide Experience of a Durable Centrifugal Flow Pump in Pediatric Patients. Seminars in Thoracic and Cardiovascular Surgery, 2018, 30, 327-335.                                                                                      | 0.4 | 51        |
| 31 | Despite Decreased Wait-List Times for Lung Transplantation, Lung Allocation Scores Continue to Increase. Chest, 2009, 135, 923-928.                                                                                                     | 0.4 | 50        |
| 32 | Ventricular assist devices as a bridge-to-transplant improve early post-transplant outcomes in children. Journal of Heart and Lung Transplantation, 2014, 33, 704-712.                                                                  | 0.3 | 47        |
| 33 | Surgical Reconstruction for Severe Tracheal Obstruction in Morquio A Syndrome. Annals of Thoracic Surgery, 2016, 102, e329-e331.                                                                                                        | 0.7 | 41        |
| 34 | The effect of repair technique on postoperative right-sided obstruction in patients with truncus arteriosus. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 559-568.                                                        | 0.4 | 40        |
| 35 | Increased Short- and Long-term Mortality at Low-volume Pediatric Heart Transplant Centers. Annals of Surgery, 2011, 253, 393-401.                                                                                                       | 2.1 | 40        |
| 36 | Current Spectrum of Surgical Procedures Performed for Ebstein's Malformation: An Analysis of The<br>Society of Thoracic Surgeons Congenital Heart Surgery Database. Annals of Thoracic Surgery, 2013,<br>96, 1703-1710.                 | 0.7 | 40        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | What is high risk? Redefining elevated pulmonary vascular resistance index in pediatric heart transplantation. Journal of Heart and Lung Transplantation, 2012, 31, 61-66.                                                            | 0.3 | 36        |
| 38 | Lower socioeconomic status is associated with worse outcomes after both listing and transplanting children with heart failure. Pediatric Transplantation, 2013, 17, 573-581.                                                          | 0.5 | 36        |
| 39 | Surgical Management and Outcomes of Ebstein Anomaly in Neonates and Infants: A Society of Thoracic<br>Surgeons Congenital Heart Surgery Database Analysis. Annals of Thoracic Surgery, 2018, 106, 785-791.                            | 0.7 | 36        |
| 40 | Donor organ turn-downs and outcomes after listing for pediatric heart transplant. Journal of Heart<br>and Lung Transplantation, 2019, 38, 241-251.                                                                                    | 0.3 | 35        |
| 41 | The new United States heart allocation policy: Progress through collaborative revision. Journal of<br>Heart and Lung Transplantation, 2017, 36, 595-596.                                                                              | 0.3 | 34        |
| 42 | Surgical Reconstruction of Tracheal Stenosis in Conjunction With Congenital Heart Defects. Annals of Thoracic Surgery, 2012, 93, 1266-1273.                                                                                           | 0.7 | 33        |
| 43 | Midterm Results of the Modified Ross/Konno Procedure in Neonates and Infants. Annals of Thoracic<br>Surgery, 2012, 94, 156-163.                                                                                                       | 0.7 | 33        |
| 44 | Pediatric cardiac waitlist mortality—Still too high. Pediatric Transplantation, 2020, 24, e13671.                                                                                                                                     | 0.5 | 32        |
| 45 | What Is the Optimal Management of Late-Presenting Survivors of Acute Type A Aortic Dissection?.<br>Annals of Thoracic Surgery, 2007, 83, 1593-1602.                                                                                   | 0.7 | 31        |
| 46 | The Fontan Procedure: Evolution in Technique; Attendant Imperfections and Transplantation for<br>"Failure― Pediatric Cardiac Surgery Annual, 2011, 14, 55-66.                                                                         | 0.5 | 30        |
| 47 | Gastrointestinal Complications After Stage I Norwood Versus Hybrid Procedures. Annals of Thoracic<br>Surgery, 2013, 95, 189-196.                                                                                                      | 0.7 | 29        |
| 48 | Assessment of Growth 6 Years after the Norwood Procedure. Journal of Pediatrics, 2017, 180, 270-274.e6.                                                                                                                               | 0.9 | 27        |
| 49 | Indications, Timing, and Prognosis of Operative Repair of Aortic Dissections. Seminars in Thoracic and<br>Cardiovascular Surgery, 2005, 17, 224-235.                                                                                  | 0.4 | 26        |
| 50 | Decision-making for surgery in the management of patients with univentricular heart. Frontiers in<br>Pediatrics, 2015, 3, 61.                                                                                                         | 0.9 | 25        |
| 51 | Hybrid palliation for critical systemic outflow obstruction: Neither rapid stage 1 Norwood nor comprehensive stage 2 mitigate consequences of early risk factors. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 182-193. | 0.4 | 25        |
| 52 | Variability in donor selection among pediatric heart transplant providers: Results from an international survey. Pediatric Transplantation, 2019, 23, e13417.                                                                         | 0.5 | 25        |
| 53 | Age Less Than Two Years Is Not a Risk Factor for Mortality After Mitral Valve Replacement in Children.<br>Annals of Thoracic Surgery, 2011, 91, 1228-1234.                                                                            | 0.7 | 22        |
| 54 | Using virtual reality simulated implantation for fit-testing pediatric patients for adult ventricular assist devices. JTCVS Techniques, 2021, 6, 134-137.                                                                             | 0.2 | 20        |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Low body mass index is associated with increased waitlist mortality among children listed for heart transplant. Journal of Heart and Lung Transplantation, 2015, 34, 1462-1470.                                                                                          | 0.3 | 19        |
| 56 | Developmental screening in children with CHD: Ages and Stages Questionnaires. Cardiology in the Young, 2017, 27, 1447-1454.                                                                                                                                              | 0.4 | 17        |
| 57 | Using the UNOS/SRTR and PHTS Databases to Improve Quality in Pediatric Cardiac Transplantation.<br>World Journal for Pediatric & Congenital Heart Surgery, 2012, 3, 421-432.                                                                                             | 0.3 | 15        |
| 58 | Regional Variation in Survival Before and After Pediatric Heart Transplantation—An Analysis of The<br>UNOS Database. American Journal of Transplantation, 2013, 13, 1817-1829.                                                                                           | 2.6 | 15        |
| 59 | Evidence supports severe renal insufficiency as a relative contraindication to heart transplantation.<br>Journal of Heart and Lung Transplantation, 2016, 35, 893-900.                                                                                                   | 0.3 | 15        |
| 60 | Urgent listing exceptions and outcomes in pediatric heart transplantation: Comparison to standard criteria patients. Journal of Heart and Lung Transplantation, 2017, 36, 280-288.                                                                                       | 0.3 | 15        |
| 61 | Changes in renal function after left ventricular assist device placement in pediatric patients: A<br>Pedimacs analysis. Journal of Heart and Lung Transplantation, 2018, 37, 1218-1225.                                                                                  | 0.3 | 15        |
| 62 | Laryngopharyngeal dysfunction independent of vocal fold palsy inÂinfants after aortic arch<br>interventions. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 617-624.e2.                                                                                      | 0.4 | 14        |
| 63 | Improving early outcomes following hybrid procedure for patients with single ventricle and systemic<br>outflow obstruction: defining risk factorsâ€. European Journal of Cardio-thoracic Surgery, 2015, 47,<br>995-1001.                                                 | 0.6 | 14        |
| 64 | Behavioral economics—A framework for donor organ decisionâ€making in pediatric heart<br>transplantation. Pediatric Transplantation, 2020, 24, e13655.                                                                                                                    | 0.5 | 13        |
| 65 | Effects of donor cause of death, ischemia time, inotrope exposure, troponin values, cardiopulmonary<br>resuscitation, electrocardiographic and echocardiographic data on recipient outcomes: A review of<br>the literature. Pediatric Transplantation, 2020, 24, e13676. | 0.5 | 13        |
| 66 | Adult-age donors offer acceptable long-term survival to pediatric heart transplant recipients: An<br>analysis of the United Network of Organ Sharing database. Journal of Thoracic and Cardiovascular<br>Surgery, 2006, 132, 1208-1212.                                  | 0.4 | 12        |
| 67 | Utilization and Outcomes of Temporary Ventricular Assist Devices in Children: A Report from the<br>Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs). Journal of Heart and<br>Lung Transplantation, 2016, 35, S45-S46.                        | 0.3 | 12        |
| 68 | Utilization and outcomes in biventricular assist device support in pediatrics. Journal of Thoracic and<br>Cardiovascular Surgery, 2020, 160, 1301-1308.e2.                                                                                                               | 0.4 | 10        |
| 69 | Review of interactions between highâ€risk pediatric heart transplant recipients and marginal donors including utilization of risk score models. Pediatric Transplantation, 2020, 24, e13665.                                                                             | 0.5 | 10        |
| 70 | Can linking databases answer questions about paediatric heart failure?. Cardiology in the Young, 2015, 25, 160-166.                                                                                                                                                      | 0.4 | 9         |
| 71 | Review of the discard and/or refusal rate of offered donor hearts to pediatric waitlisted candidates.<br>Pediatric Transplantation, 2020, 24, e13674.                                                                                                                    | 0.5 | 8         |
| 72 | Review of the impact of donor characteristics on pediatric heart transplant outcomes. Pediatric Transplantation, 2020, 24, e13680.                                                                                                                                       | 0.5 | 8         |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Neurodevelopmental Outcomes After Infant Cardiac Surgery With Circulatory Arrest and Intermittent Perfusion. Annals of Thoracic Surgery, 2014, 98, 119-124.                                                                                                            | 0.7 | 7         |
| 74 | Creation of a Quantitative Score to Predict the Need for Mechanical Support in Children Awaiting<br>Heart Transplant. Annals of Thoracic Surgery, 2014, 98, 675-684.                                                                                                   | 0.7 | 7         |
| 75 | Predicting Utility of Exercise Tests Based on History/Holter in Patients with Premature Ventricular<br>Contractions. Pediatric Cardiology, 2015, 36, 214-218.                                                                                                          | 0.6 | 7         |
| 76 | Mitral Valve Surgery in the First Year of Life. Pediatric Cardiology, 2020, 41, 334-340.                                                                                                                                                                               | 0.6 | 7         |
| 77 | Early SurgicalÂClosure of Atrial Septal Defect Improves Clinical Status of Symptomatic Young Children with Underlying Pulmonary Abnormalities. Pediatric Cardiology, 2020, 41, 1115-1124.                                                                              | 0.6 | 7         |
| 78 | A comprehensive strategy in donor acceptance: Impact on pediatric waitlist and heart transplant outcomes. Pediatric Transplantation, 2020, 24, e13764.                                                                                                                 | 0.5 | 7         |
| 79 | Patient and Device Selection in Pediatric MCS: A Review of Current Consensus and Unsettled Questions. Pediatric Cardiology, 2022, 43, 1193-1204.                                                                                                                       | 0.6 | 7         |
| 80 | First use of an intra-pericardial continuous flow ventricular assist device in a child with muscular dystrophy. Cardiology in the Young, 2015, 25, 184-186.                                                                                                            | 0.4 | 6         |
| 81 | Commentary in reply to Cogswell et al.: An early investigation of outcomes with the new 2018 donor<br>heart allocation system in the United States. Journal of Heart and Lung Transplantation, 2020, 39,<br>726-728.                                                   | 0.3 | 5         |
| 82 | Heart Failure After Cavopulmonary Connection: Conversion to Biventricular Circulatory Support.<br>Annals of Thoracic Surgery, 2021, 112, e185-e188.                                                                                                                    | 0.7 | 5         |
| 83 | Heading toward the future of pediatric heart failure with continuous-flow ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 1356-1357.                                                                                            | 0.4 | 4         |
| 84 | Transplantation for the "failed―Fontan. Progress in Pediatric Cardiology, 2009, 26, 21-29.                                                                                                                                                                             | 0.2 | 3         |
| 85 | Stage 1 hybrid palliation for hypoplastic left heart syndrome—assessment of contemporary patterns<br>of use: An analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Journal of<br>Thoracic and Cardiovascular Surgery, 2015, 149, 203-204. | 0.4 | 3         |
| 86 | Pediatric donor management to optimize donor heart utilization. Pediatric Transplantation, 2020, 24, e13679.                                                                                                                                                           | 0.5 | 3         |
| 87 | Center Donor Refusal Rate Is Associated With Worse Outcomes After Listing in Pediatric Heart Transplantation. Transplantation, 2021, 105, 2080-2085.                                                                                                                   | 0.5 | 3         |
| 88 | Improving Outcomes in Children Requiring Mechanical Bridge-To-Transplantation (BTT) in the Current<br>Era. Journal of Heart and Lung Transplantation, 2013, 32, S107.                                                                                                  | 0.3 | 2         |
| 89 | Emergent Interhospital Transport of Pediatric Patient With a Berlin Heart Device. Air Medical Journal, 2016, 35, 314-316.                                                                                                                                              | 0.3 | 2         |
| 90 | Feasibility of real-time cine cardiac magnetic resonance imaging to predict the presence of significant<br>retrosternal adhesions prior to redo-sternotomy. Journal of Cardiovascular Magnetic Resonance,<br>2019, 21, 67.                                             | 1.6 | 2         |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Accepting pediatric donor hearts: How do we make the best decision?. Pediatric Transplantation, 2020, 24, e13670.                                                                                                                     | 0.5 | 2         |
| 92  | Pediatric Perfusion Techniques for Complex Congenital Cardiac Surgery. , 2008, , 29-58.                                                                                                                                               |     | 2         |
| 93  | We need better pediatric cardiac transplantation risk modeling. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, 2036-2039.e1.                                                                                              | 0.4 | 2         |
| 94  | A range of options for staged palliation of hypoplastic left heart syndrome. Journal of Thoracic and<br>Cardiovascular Surgery, 2015, 150, 436-437.                                                                                   | 0.4 | 1         |
| 95  | Modified Model for End-Stage Liver Disease eXcluding INR (MELD XI) Score Predicts Post-Heart<br>Transplant Mortality Among Children with Congenital Heart Disease. Journal of Heart and Lung<br>Transplantation, 2016, 35, S413-S414. | 0.3 | 1         |
| 96  | Identifying children appropriate for bridge-to-transplantation with the Berlin Heart EXCOR. Journal of Heart and Lung Transplantation, 2017, 36, 1183-1184.                                                                           | 0.3 | 1         |
| 97  | Short-Term Mechanical Cardiopulmonary Support Devices. , 2018, , 683-697.                                                                                                                                                             |     | 1         |
| 98  | Heart transplantation in an infant with Williamsâ€Beuren syndrome and rapidly progressive ischemic cardiomyopathy. Pediatric Transplantation, 2020, 24, e13688.                                                                       | 0.5 | 1         |
| 99  | Low molecular weight heparin: An evaluation of current and potential clinical utility in surgery.<br>International Journal of Angiology, 1999, 8, 203-215.                                                                            | 0.2 | 0         |
| 100 | Invited commentary. Annals of Thoracic Surgery, 2007, 84, 1262-1263.                                                                                                                                                                  | 0.7 | 0         |
| 101 | 280: Higher Center Volume with Bridge-to-Transplant Recipients Predicts Superior Post-Transplant<br>Outcomes in Bridged and Non-Bridged Recipients. Journal of Heart and Lung Transplantation, 2009, 28,<br>S163-S164.                | 0.3 | 0         |
| 102 | 282: A Single-Institutional 4-Year Experience Comparing HM II and HM I XVE as a Bridge to Transplant.<br>Journal of Heart and Lung Transplantation, 2009, 28, S164.                                                                   | 0.3 | 0         |
| 103 | 292: Elevated Lung Allocation Score Is Associated with Decreased Survival and Increased<br>Complications after Lung Transplantation. Journal of Heart and Lung Transplantation, 2009, 28,<br>S167-S168.                               | 0.3 | 0         |
| 104 | 662: Volume-Outcome Relationships in Pediatric Heart Transplantation. Journal of Heart and Lung<br>Transplantation, 2009, 28, S295-S296.                                                                                              | 0.3 | 0         |
| 105 | 87: Influence of the New Heart Allocation System on Pediatric Waitlist and Post-Transplant Survival.<br>Journal of Heart and Lung Transplantation, 2010, 29, S34-S35.                                                                 | 0.3 | 0         |
| 106 | Invited Commentary. Annals of Thoracic Surgery, 2011, 92, 913.                                                                                                                                                                        | 0.7 | 0         |
| 107 | Invited Commentary. Annals of Thoracic Surgery, 2011, 92, 1389-1390.                                                                                                                                                                  | 0.7 | 0         |
| 108 | Invited Commentary. Annals of Thoracic Surgery, 2012, 93, 1590-1591.                                                                                                                                                                  | 0.7 | 0         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Invited Commentary. Annals of Thoracic Surgery, 2014, 98, 1441-1442.                                                                                                                            | 0.7 | 0         |
| 110 | Perventricular repair of ventricular septal defects: Specific techniques have specific risks. Journal of<br>Thoracic and Cardiovascular Surgery, 2016, 151, e87-e88.                            | 0.4 | 0         |
| 111 | The technique matters, it's just not clear how. Journal of Thoracic and Cardiovascular Surgery, 2016,<br>152, 480-481.                                                                          | 0.4 | 0         |
| 112 | A case for using "marginal―hearts. Pediatric Transplantation, 2016, 20, 740-741.                                                                                                                | 0.5 | 0         |
| 113 | Pediatric VAD: A Bridge to Nowhere—Lessons Learned as a Result of One Child's Suffering (FR437).<br>Journal of Pain and Symptom Management, 2016, 51, 359-360.                                  | 0.6 | Ο         |
| 114 | Investigating the causes of neurodevelopmental deficits in congenital heart disease through multiple gestations. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 282-283.            | 0.4 | 0         |
| 115 | Invited Commentary. Annals of Thoracic Surgery, 2017, 103, 1320-1321.                                                                                                                           | 0.7 | 0         |
| 116 | Relationship Between eGFR and Survival Before and After Heart Transplantation in Children. Journal of Heart and Lung Transplantation, 2017, 36, S266-S267.                                      | 0.3 | 0         |
| 117 | Invited Commentary. Annals of Thoracic Surgery, 2017, 104, 1618-1619.                                                                                                                           | 0.7 | 0         |
| 118 | All the small things: The impact of central venous catheters in neonates undergoing cardiac surgery.<br>Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1159-1160.                   | 0.4 | 0         |
| 119 | Increasing Use of Exceptions After Changes to Pediatric Heart Allocation. Journal of Heart and Lung<br>Transplantation, 2018, 37, S61-S62.                                                      | 0.3 | 0         |
| 120 | Alternatives to PumpKIN: The ongoing development of ventricular assist devices for infants. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1642.                                    | 0.4 | 0         |
| 121 | Another step toward successful mechanical support of neonatal patients with single-ventricle circulation. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, e175-e176.                 | 0.4 | 0         |
| 122 | Post-transplant Mortality and the Components of Donor Organ Ischemic Time in Pediatric Heart<br>Transplantation. Journal of Heart and Lung Transplantation, 2018, 37, S397-S398.                | 0.3 | 0         |
| 123 | Invited Commentary. Annals of Thoracic Surgery, 2018, 106, 567.                                                                                                                                 | 0.7 | 0         |
| 124 | Waiting for repair: Neonatal risk for brain injury during the preoperative period. Journal of Thoracic<br>and Cardiovascular Surgery, 2018, 156, 1665-1666.                                     | 0.4 | 0         |
| 125 | Commentary: The end of the beginning: The evolving role of mechanical circulatory support in children with heart failure. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 1444-1445. | 0.4 | 0         |
| 126 | Commentary: The future fourth stage of single-ventricle palliation. Journal of Thoracic and<br>Cardiovascular Surgery, 2019, 158, 1639-1640.                                                    | 0.4 | 0         |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Regional Variation in Donor Refusal Rates Correlates with Poor Wait List Outcomes. Journal of Heart and Lung Transplantation, 2019, 38, S21-S22.                                                                  | 0.3 | 0         |
| 128 | Commentary: How long until a new heart is a "normal―heart in transplanted single-ventricle patients?. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1997-1998.                                       | 0.4 | 0         |
| 129 | Commentary: Not safe at any flow: The challenges of low-flow pediatric operation of adult<br>continuous-flow ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 2020,<br>159, 1530-1531. | 0.4 | 0         |
| 130 | Invited Commentary. Annals of Thoracic Surgery, 2020, 110, 205-206.                                                                                                                                               | 0.7 | 0         |
| 131 | Commentary: Chicken or egg: Does risk-adjustment hide the deleterious consequences of bridging to<br>transplant with temporary devices?. Journal of Thoracic and Cardiovascular Surgery, 2022, 163,<br>149-150.   | 0.4 | 0         |
| 132 | Intracorporeal VAD Outcomes in the ACTION Quality Improvement Network. Journal of Heart and Lung<br>Transplantation, 2020, 39, S84.                                                                               | 0.3 | 0         |
| 133 | Commentary: Donor-Recipient Size Mismatch in Heart Transplantation: An Independent Risk Factor for<br>Worse Outcomes or a Marker for Cofounders?. Seminars in Thoracic and Cardiovascular Surgery,<br>2021, , .   | 0.4 | 0         |
| 134 | Cardiac Surgery in the Neonate with Congenital Heart Disease. , 2008, , 355-375.                                                                                                                                  |     | 0         |
| 135 | Pediatric Cardiologist and the Infant or Child before Heart Transplantation. , 2017, , 1-11.                                                                                                                      |     | 0         |
| 136 | The persistence of cognitive deficits into adulthood after the arterial switch procedure: Can we change things?. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 1036-1037.                            | 0.4 | 0         |
| 137 | Cardiac Support Devices and Their Use in Infants and Children in the Overall Strategy of Cardiac<br>Transplantation. , 2018, , 1-19.                                                                              |     | 0         |
| 138 | Pediatric Cardiologist and the Infant or Child before Heart Transplantation. , 2018, , 105-115.                                                                                                                   |     | 0         |
| 139 | Cardiac Support Devices and Their Use in Infants and Children in the Overall Strategy of Cardiac Transplantation. , 2018, , 709-727.                                                                              |     | 0         |
| 140 | Commentary: To vent or not, that is the question. JTCVS Open, 2022, , .                                                                                                                                           | 0.2 | 0         |