Alexander N Kharlamov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9398435/publications.pdf

Version: 2024-02-01

1039406 676716 29 579 9 22 g-index citations h-index papers 41 41 41 859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Silica–gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale, 2015, 7, 8003-8015.	2.8	171
2	Emerging technologies: polymer-free phospholipid encapsulated sirolimus nanocarriers for the controlled release of drug from a stent-plus-balloon or a stand-alone balloon catheter. EuroIntervention, 2013, 9, 148-156.	1.4	93
3	Plasmonic photothermal therapy of atherosclerosis with nanoparticles: long-term outcomes and safety in NANOM-FIM trial. Future Cardiology, 2017, 13, 345-363.	0.5	64
4	Plasmonic Photothermic and Stem Cell Therapy of Atherosclerotic Plaque As a Novel Nanotool for Angioplasty and Artery Remodeling. Rejuvenation Research, 2012, 15, 222-230.	0.9	39
5	Progress in Treatment by Percutaneous Coronary Intervention: The Stent of the Future. Revista Espanola De Cardiologia (English Ed), 2013, 66, 483-496.	0.4	34
6	Freeing the vessel from metallic cage: what can we achieve with bioresorbable vascular scaffolds?. Cardiovascular Intervention and Therapeutics, 2012, 27, 141-154.	1.2	28
7	Plasmonic photothermal therapy for atheroregression below Glagov threshold. Future Cardiology, 2013, 9, 405-425.	0.5	16
8	Cardiovascular burden and percutaneous interventions in Russian Federation: systematic epidemiological update. Cardiovascular Diagnosis and Therapy, 2017, 7, 60-84.	0.7	12
9	Do we have a future with transcatheter adventitial delivery of stem cells?. International Journal of Cardiology, 2013, 165, 217-221.	0.8	8
10	Nanoparticles for treatment of atherosclerosis: challenges of plasmonic photothermal therapy in translational studies. Future Cardiology, 2018, 14, 109-114.	0.5	7
11	Why do we fail to achieve Glagovian atheroregression in lipid-lowering trials?. Interventional Cardiology, 2015, 7, 469-482.	0.0	5
12	Plasmonic Photothermal Therapy Of Atherosclerosis And Preparation Of Target Lesion In Patients With Arterial Remodeling: Subanalysis Of Nanom-Fim Trial. Atherosclerosis, 2019, 287, e34.	0.4	5
13	Phenomenon of elongated struts: Is optical coherence tomography accurate enough to analyze scaffold area?. International Journal of Cardiology, 2013, 168, 4280-4284.	0.8	4
14	Bioresorbable Scaffolds for Atheroregression: Understanding of Transient Scaffolding. Current Cardiology Reviews, 2016, 12, 66-82.	0.6	4
15	Glimpse into the Future of Nanotheranostic Strategies for Regression of Atherosclerosis through the Prism of Systems Biomedicine: Systematic Review of Innovations from Multifunctional Nanoformulations to Devices on Chip. Current Nanomedicine, 2016, 6, 186-218.	0.2	4
16	Scaffold thrombosis: Exaggerated illusion, or when statistics rules. International Journal of Cardiology, 2016, 209, 206-209.	0.8	3
17	Plasmonics for Treatment of Atherosclerosis: Results of NANOM-FIM Trial. Journal of Nanomedicine & Nanotechnology, 2012, 04, .	1.1	3
18	Can we adapt histological injury score for optical coherence tomography of coronaries?. International Journal of Cardiology, 2013, 168, 4322-4324.	0.8	2

#	Article	IF	CITATIONS
19	Undiscovered pathology of transient scaffolding remains a driver of failures in clinical trials. World Journal of Cardiology, 2018, 10, 165-186.	0.5	2
20	TCT-303 Optimal interventional strategy in patients underwent plasmonicphotothermal therapy of atherosclerosis: subanalysis of NANOM-FIM trial. Journal of the American College of Cardiology, 2013, 62, B98.	1.2	0
21	CRT-600.03 Optical Coherence Tomography-adapted Score as Tool for In-vivo Coronary Artery Injury Evaluation: Subanalysis of NANO ACTIVE FIM-IN Study. JACC: Cardiovascular Interventions, 2016, 9, S58.	1.1	O
22	P6445Haplogroup disparities of atheroregression in white and east asian populations in lipid-lowering and invasive studies. European Heart Journal, 2018, 39, .	1.0	0
23	The Lower The Better or Is There a Bottom In Our Fight Against LDL-C? A Pooled Study of Plaque Burden Reduction in Lipid-Lowering and Invasive Trials. Atherosclerosis Supplements, 2018, 32, 147.	1.2	O
24	Translational Exploration and Clinical Testing of Silica–Gold Nanoparticles in Development of Multifunctional Nanoplatform for Theranostics of Atherosclerosis., 2018,, 681-741.		0
25	Can dropping Idl-c cause regression of atherosclerosis or should toxic Idl-c be eradicated? A pooled study of plaque burden reduction in lipid-lowering trials. Atherosclerosis, 2019, 287, e104.	0.4	O
26	Optimal Strategy of Coronary Intervention in Patients Underwent Plasmonic Photothermal Therapy for Atheroregression below Glagov Threshold: Subanalysis of NANOM-FIM Trial. Journal of Nanomedicine & Biotherapeutic Discovery, 2013, 03, .	0.6	0
27	New Revolution in Vascular Interventional Medicine: Bioresorbable Scaffolds for Atheroregression. Journal of Vascular Medicine & Surgery, 2013, 01, .	0.1	O
28	Glagov Atheroregression below Threshold of 40% Plaque Burden: Achievements and New Horizons. Journal of Vascular Medicine & Surgery, 2013, 01, .	0.1	0
29	Can we reverse atherogenesis with the eradication of toxic LDL-C? A comparative pooled analysis of selected therapies in quest of the revolutionary approach. European Heart Journal, 2020, 41, .	1.0	O