Xuli Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9398277/publications.pdf

Version: 2024-02-01

331670 330143 1,442 38 21 37 citations h-index g-index papers 38 38 38 1981 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A new method to reduce allergenicity by improving the functional properties of soybean 7S protein through covalent modification with polyphenols. Food Chemistry, 2022, 373, 131589.	8.2	18
2	Validation of Deep Learning-Based DFCNN in Extremely Large-Scale Virtual Screening and Application in Trypsin I Protease Inhibitor Discovery. Frontiers in Molecular Biosciences, 2022, 9, .	3. 5	4
3	Changes in structure and allergenicity of shrimp tropomyosin by dietary polyphenols treatment. Food Research International, 2021, 140, 109997.	6.2	26
4	Effect of heat, enzymatic hydrolysis and acid-alkali treatment on the allergenicity of silkworm pupa protein extract. Food Chemistry, 2021, 343, 128461.	8.2	32
5	Enzymatic and Nonenzymatic Conjugates of Lactoferrin and (â^')-Epigallocatechin Gallate: Formation, Structure, Functionality, and Allergenicity. Journal of Agricultural and Food Chemistry, 2021, 69, 6291-6302.	5 . 2	59
6	Reducing the Allergenicity of \hat{I}_{\pm} -Lactalbumin after Lipid Peroxidation. Journal of Agricultural and Food Chemistry, 2021, 69, 5725-5733.	5.2	8
7	Nutritional, functional, and allergenic properties of silkworm pupae. Food Science and Nutrition, 2021, 9, 4655-4665.	3.4	33
8	Development of hypoallergenic ovalbumin with improving functional properties by AAPH and acrolein treatment. Journal of Functional Foods, 2021, 86, 104733.	3.4	4
9	Identification of potential allergens in larva, pupa, moth, silk, slough and feces of domestic silkworm (Bombyx mori). Food Chemistry, 2021, 362, 130231.	8.2	10
10	A novel virtual drug screening pipeline with deep-leaning as core component identifies inhibitor of pancreatic alpha-amylase. , $2021,$, .		5
11	Lipid oversupply induces CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1: an early event prior to insulin resistance. Theranostics, 2020, 10, 1332-1354.	10.0	29
12	Changes in Allergenicity of Ovalbumin <i>in Vitro</i> and <i>in Vivo</i> on Conjugation with Quercetin. Journal of Agricultural and Food Chemistry, 2020, 68, 4027-4035.	5.2	55
13	Covalent conjugation with (â^')-epigallo-catechin 3-gallate and chlorogenic acid changes allergenicity and functional properties of Ara h1 from peanut. Food Chemistry, 2020, 331, 127355.	8.2	53
14	Function, digestibility and allergenicity assessment of ovalbumin–EGCG conjugates. Journal of Functional Foods, 2019, 61, 103490.	3.4	60
15	Effect of chlorogenic acid covalent conjugation on the allergenicity, digestibility and functional properties of whey protein. Food Chemistry, 2019, 298, 125024.	8.2	96
16	Large-Scale Target Identification of Herbal Medicine Using a Reverse Docking Approach. ACS Omega, 2019, 4, 9710-9719.	3.5	16
17	Lamin A buffers CK2 kinase activity to modulate aging in a progeria mouse model Science Advances, 2019, 5, eaav5078.	10.3	21
18	Characterization of binding interactions of anthraquinones and bovine \hat{l}^2 -lactoglobulin. Food Chemistry, 2019, 281, 28-35.	8.2	47

#	Article	IF	CITATIONS
19	Reducing the allergenic capacity of \hat{l}^2 -lactoglobulin by covalent conjugation with dietary polyphenols. Food Chemistry, 2018, 256, 427-434.	8.2	131
20	Characterization of binding interactions between selected phenylpropanoid glycosides and trypsin. Food Chemistry, 2018, 243, 118-124.	8.2	20
21	Effect of Covalent Interaction with Chlorogenic Acid on the Allergenic Capacity of Ovalbumin. Journal of Agricultural and Food Chemistry, 2018, 66, 9794-9800.	5.2	60
22	Acteoside and Acyl-Migrated Acteoside, Compounds in Chinese Kudingcha Tea, Inhibit α-Amylase <i>In Vitro</i> . Journal of Medicinal Food, 2017, 20, 577-585.	1.5	16
23	Effect of phenolic hydroxyl groups on inhibitory activities of phenylpropanoid glycosides against lipase. Journal of Functional Foods, 2017, 38, 510-518.	3.4	19
24	NOX2-Mediated TFEB Activation and Vacuolization Regulate Lysosome-Associated Cell Death Induced by Gypenoside L, a Saponin Isolated from <i>Gynostemma pentaphyllum</i> Journal of Agricultural and Food Chemistry, 2017, 65, 6625-6637.	5.2	10
25	Polymorphisms in Four Genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and Their Correlation with Type 2 Diabetes Mellitus in Han Chinese in Henan Province, China. International Journal of Environmental Research and Public Health, 2016, 13, 260.	2.6	27
26	Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint. Autophagy, 2016, 12, 1593-1613.	9.1	83
27	Two-Site Antibody Immunoanalytical Detection of Food Allergens by Surface Plasmon Resonance. Food Analytical Methods, 2016, 9, 582-588.	2.6	32
28	Gypenoside L inhibits autophagic flux and induces cell death in human esophageal cancer cells through endoplasm reticulum stress-mediated Ca2+ release. Oncotarget, 2016, 7, 47387-47402.	1.8	21
29	Inhibitory potential of phenylpropanoid glycosides from <i>Ligustrum purpurascens</i> Kudingcha against αâ€glucosidase and αâ€amylase <i>inÂvitro</i> International Journal of Food Science and Technology, 2015, 50, 2280-2289.	2.7	12
30	Acteoside: A lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha. Food Chemistry, 2014, 142, 306-310.	8.2	69
31	Studies on the interaction of â€epigallocatechinâ€3â€gallate from green tea with bovine βâ€lactoglobulin by spectroscopic methods and docking. International Journal of Dairy Technology, 2013, 66, 7-13.	2.8	48
32	Phenylpropanoid glycoside inhibition of pepsin, trypsin and α-chymotrypsin enzyme activity in Kudingcha leaves from Ligustrum purpurascens. Food Research International, 2013, 54, 1376-1382.	6.2	39
33	Reduced allergenicity of \hat{l}^2 -lactoglobulin in vitro by tea catechins binding. Food and Agricultural Immunology, 2013, 24, 305-313.	1.4	9
34	Conjugation of functional oligosaccharides reduced in vitro allergenicity of \hat{l}^2 -lactoglobulin. Food and Agricultural Immunology, 2013, 24, 379-391.	1.4	22
35	Characterization of Binding Interactions of (â^')-Epigallocatechin-3-gallate from Green Tea and Lipase. Journal of Agricultural and Food Chemistry, 2013, 61, 8829-8835.	5.2	82
36	Investigation of the interaction between (â^²)â€epigallocatechinâ€3â€gallate with trypsin and αâ€chymotrypsin. International Journal of Food Science and Technology, 2013, 48, 2340-2347.	2.7	11

Xuli Wu

#	Article	IF	CITATIONS
37	Analysis of binding interaction between (\hat{a}^{*})-epigallocatechin (EGC) and \hat{l}^{2} -lactoglobulin by multi-spectroscopic method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 82, 164-168.	3.9	87
38	Anaphylactic shock and lethal anaphylaxis caused by food consumption in China. Trends in Food Science and Technology, 2009, 20, 227-231.	15.1	68