
Cristina Campano Tiedra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/939808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When microbial biotechnology meets material engineering. Microbial Biotechnology, 2022, 15, 149-163.	2.0	13
2	Critical comparison of the properties of cellulose nanofibers produced from softwood and hardwood through enzymatic, chemical and mechanical processes. International Journal of Biological Macromolecules, 2022, 205, 220-230.	3.6	31
3	In-depth characterization of the aggregation state of cellulose nanocrystals through analysis of transmission electron microscopy images. Carbohydrate Polymers, 2021, 254, 117271.	5.1	20
4	Increasing the Possibilities of TEMPOâ€Mediated Oxidation in the Production of Cellulose Nanofibers by Reducing the Reaction Time and Reusing the Reaction Medium. Advanced Sustainable Systems, 2021, 5, 2000277.	2.7	29
5	Enhanced Morphological Characterization of Cellulose Nano/Microfibers through Image Skeleton Analysis. Nanomaterials, 2021, 11, 2077.	1.9	18
6	Correlation between rheological measurements and morphological features of lignocellulosic micro/nanofibers from different softwood sources. International Journal of Biological Macromolecules, 2021, 187, 789-799.	3.6	17
7	Tuning morphology and structure of non-woody nanocellulose: Ranging between nanofibers and nanocrystals. Industrial Crops and Products, 2021, 171, 113877.	2.5	28
8	A reproducible method to characterize the bulk morphology of cellulose nanocrystals and nanofibers by transmission electron microscopy. Cellulose, 2020, 27, 4871-4887.	2.4	33
9	Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions, and Market Perspectives. Molecules, 2020, 25, 526.	1.7	86
10	Hairy cationic nanocrystalline cellulose as retention additive in recycled paper. Cellulose, 2019, 26, 6275-6289.	2.4	10
11	Hairy cationic nanocrystalline cellulose as a novel flocculant of clay. Journal of Colloid and Interface Science, 2019, 545, 153-161.	5.0	23
12	Microalgae harvesting with the novel flocculant hairy cationic nanocrystalline cellulose. Colloids and Surfaces B: Biointerfaces, 2019, 178, 329-336.	2.5	16
13	Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. International Journal of Biological Macromolecules, 2018, 114, 1077-1083.	3.6	38
14	Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 2018, 25, 269-280.	2.4	52
15	Nanocellulose for Industrial Use. , 2018, , 74-126.		105
16	In situ production of bacterial cellulose to economically improve recycled paper properties. International Journal of Biological Macromolecules, 2018, 118, 1532-1541.	3.6	22
17	Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydrate Polymers, 2017, 173, 489-496.	5.1	44
18	Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose, 2016, 23, 57-91.	2.4	197