Francois X Claret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9397746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of cancer‑associated fibroblasts in the resistance to antitumor therapy, and their potential therapeutic mechanisms in non‑small cell lung cancer (Review). Oncology Letters, 2021, 21, 413.	0.8	17
2	Identification of a seven-long non-coding RNA signature associated with Jab1/CSN5 in predicting hepatocellular carcinoma. Cell Death Discovery, 2021, 7, 178.	2.0	6
3	Hydroxychloroquine synergizes with the PI3K inhibitor BKM120 to exhibit antitumor efficacy independent of autophagy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 374.	3.5	8
4	<p>YAP1 Promotes Tumor Invasion and Metastasis in Nasopharyngeal Carcinoma with Hepatitis B Virus Infection</p> . OncoTargets and Therapy, 2020, Volume 13, 5629-5642.	1.0	4
5	Verteporfin Inhibits PD-L1 through Autophagy and the STAT1–IRF1–TRIM28 Signaling Axis, Exerting Antitumor Efficacy. Cancer Immunology Research, 2020, 8, 952-965.	1.6	63
6	Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS ONE, 2020, 15, e0231003.	1.1	33
7	AP-1 Transcription Factors as Regulators of Immune Responses in Cancer. Cancers, 2019, 11, 1037.	1.7	166
8	MicroRNAs as Therapeutic Targets in Nasopharyngeal Carcinoma. Frontiers in Oncology, 2019, 9, 756.	1.3	41
9	MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5 in triple-negative breast cancer. Cancer Letters, 2019, 465, 12-23.	3.2	21
10	The novel Jab1 inhibitor CSN5i-3 suppresses cell proliferation and induces apoptosis in human breast cancer cells. Neoplasma, 2019, 66, 481-486.	0.7	16
11	Jab1/Cops5 contributes to chemoresistance in breast cancer by regulating Rad51. Cellular Signalling, 2019, 53, 39-48.	1.7	21
12	NPM-ALK Upregulates Jab1/Csn5 through STAT3 Activation in Anaplastic Large Cell Lymphoma: A Novel Function of NPM-ALK That Contributes to PD1/PD-L1 Immune Checkpoint Regulation. Blood, 2019, 134, 2796-2796.	0.6	0
13	hsa‑miR‑24 suppresses metastasis in nasopharyngeal carcinoma by regulating the c‑Myc/epithelial‑mesenchymal transition axis. Oncology Reports, 2018, 40, 2536-2546.	1.2	9
14	Jab1/COPS5 as a Novel Biomarker for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Human Cancer. Frontiers in Pharmacology, 2018, 9, 135.	1.6	39
15	Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics, 2017, 12, 187-197.	1.3	116
16	Jab1/Csn5–Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress. Clinical Cancer Research, 2017, 23, 4450-4461.	3.2	53
17	Autophagy in the "inflammation-carcinogenesis―pathway of liver and HCC immunotherapy. Cancer Letters, 2017, 411, 82-89.	3.2	54
18	Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression. Oncogene, 2017, 36, 1069-1079	2.6	48

#	Article	IF	CITATIONS
19	Novel biomarkers of nasopharyngeal carcinoma metastasis risk identified by reverse phase protein array based tumor profiling with consideration of plasma Epstein–Barr virus DNA load. Proteomics - Clinical Applications, 2017, 11, 1600090.	0.8	7
20	Jab1/Csn5 Signaling in Breast Cancer. , 2017, , .		2
21	Downâ€regulation of the cyclinâ€dependent kinase inhibitor p57 is mediated by Jab1/Csn5 in hepatocarcinogenesis. Hepatology, 2016, 63, 898-913.	3.6	40
22	Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3′UTR and 5′UTR of Jab1/CSN5. Oncogene, 2016, 35, 6096-6108.	2.6	74
23	RBM24 suppresses cancer progression by upregulating miR-25 to target MALAT1 in nasopharyngeal carcinoma. Cell Death and Disease, 2016, 7, e2352-e2352.	2.7	58
24	Constitutive control of AKT1 gene expression by JUNB/CJUN in ALK+ anaplastic large-cell lymphoma: a novel crosstalk mechanism. Leukemia, 2015, 29, 2162-2172.	3.3	18
25	Molecular markers to assess short-term disease local recurrence in nasopharyngeal carcinoma. Oncology Reports, 2015, 33, 1418-1426.	1.2	18
26	Clinical implications of hepatitis B viral infection in Epstein–Barr virus-associated nasopharyngeal carcinoma. Journal of Clinical Virology, 2015, 64, 64-71.	1.6	18
27	Abstract LB-B03: miR-24 acts as a tumor suppressor and radiosensitizer by targeting Jab1/CSN5 functions. Molecular Cancer Therapeutics, 2015, 14, LB-B03-LB-B03.	1.9	1
28	Involvement of microRNA-24 and DNA Methylation in Resistance of Nasopharyngeal Carcinoma to Ionizing Radiation. Molecular Cancer Therapeutics, 2014, 13, 3163-3174.	1.9	56
29	Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer. Cancer Biology and Therapy, 2014, 15, 256-262.	1.5	53
30	Personalized drug combinations to overcome trastuzumab resistance in HER2-positive breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 353-365.	3.3	30
31	The oncogenic <scp>JUNB</scp> / <scp>CD</scp> 30 axis contributes to cell cycle deregulation in <scp>ALK</scp> + anaplastic large cell lymphoma. British Journal of Haematology, 2014, 167, 514-523.	1.2	25
32	Abstract 1825: Jab1/Csn5 a new target in the resistant mechanism to HER2-targeted therapies for breast cancer. , 2014, , .		0
33	Curcumin analogue T83 exhibits potent antitumor activity and induces radiosensitivity through inactivation of Jab1 in nasopharyngeal carcinoma. BMC Cancer, 2013, 13, 323.	1.1	32
34	Dickkopf-1 is a key regulator of myeloma bone disease: Opportunities and challenges for therapeutic intervention. Blood Reviews, 2013, 27, 261-267.	2.8	51
35	Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene, 2013, 32, 2756-2766.	2.6	68
36	Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1273-1278.	3.3	115

#	Article	IF	CITATIONS
37	Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. Journal of Leukocyte Biology, 2013, 94, 423-429.	1.5	77
38	Stat3 Inhibitor Stattic Exhibits Potent Antitumor Activity and Induces Chemo- and Radio-Sensitivity in Nasopharyngeal Carcinoma. PLoS ONE, 2013, 8, e54565.	1.1	108
39	Abstract B231: Jab1/Csn5 a new player driving the resistance to Her2-targeted therapies for breast cancer , 2013, , .		Ο
40	Trastuzumab: Updated Mechanisms of Action and Resistance in Breast Cancer. Frontiers in Oncology, 2012, 2, 62.	1.3	427
41	Jab1/CSN5 Negatively Regulates p27 and Plays a Role in the Pathogenesis of Nasopharyngeal Carcinoma. Cancer Research, 2012, 72, 1890-1900.	0.4	65
42	Phosphatases: The New Brakes for Cancer Development?. Enzyme Research, 2012, 2012, 1-11.	1.8	54
43	Targeting Jab1/CSN5 in nasopharyngeal carcinoma. Cancer Letters, 2012, 326, 155-160.	3.2	47
44	Abstract 1855: Jab1/CSN5 a negative regulator of p27 plays a role in the pathogenesis and cisplatin sensitivity of nasopharyngeal carcinoma. , 2012, , .		0
45	Abstract 1912: Jab1/Csn5 as a novel driver for therapeutic resistance in HER2-positive breast cancer. , 2012, , .		0
46	The Role of p27 Kip1 in Dasatinib-Enhanced Paclitaxel Cytotoxicity in Human Ovarian Cancer Cells. Journal of the National Cancer Institute, 2011, 103, 1403-1422.	3.0	26
47	Expression of serine 194–phosphorylated Fas-associated death domain protein correlates with proliferation in B-cell non–Hodgkin lymphomas. Human Pathology, 2011, 42, 1117-1124.	1.1	12
48	Stat3 and CCAAT/enhancer binding protein beta (C/EBP-beta) regulate Jab1/CSN5 expression in mammary carcinoma cells. Breast Cancer Research, 2011, 13, R65.	2.2	48
49	Activation of the p53 pathway by the MDM2 inhibitor nutlin-3a overcomes BCL2 overexpression in a preclinical model of diffuse large B-cell lymphoma associated with t(14;18)(q32;q21). Leukemia, 2011, 25, 856-867.	3.3	53
50	Abstract 4286: Essential Roles of Jab1 in Cell Survival, Spontaneous DNA Damage, and DNA Repair. , 2011, , , .		0
51	JAB1/CSN5: a new player in cell cycle control and cancer. Cell Division, 2010, 5, 26.	1.1	132
52	Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene, 2010, 29, 6125-6137.	2.6	61
53	c-Jun-NH2-kinase-1 Inhibition Leads to Antitumor Activity in Ovarian Cancer. Clinical Cancer Research, 2010, 16, 184-194.	3.2	55
54	Activator Protein-1 Has an Essential Role in Pancreatic Cancer Cells and Is Regulated by a Novel Akt-Mediated Mechanism. Molecular Cancer Research, 2009, 7, 745-754.	1.5	23

#	Article	IF	CITATIONS
55	NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma. Blood, 2007, 110, 1621-1630.	0.6	72
56	Lysophosphatidic acid induction of urokinase plasminogen activator secretion requires activation of the p38MAPK pathway. International Journal of Oncology, 2007, , .	1.4	11
57	N-(4-Hydroxyphenyl)retinamide-induced apoptosis triggered by reactive oxygen species is mediated by activation of MAPKs in head and neck squamous carcinoma cells. Oncogene, 2006, 25, 2785-2794.	2.6	93
58	Potential Role of Jun Activation Domain–Binding Protein 1 as a Negative Regulator of p27kip1 in Pancreatic Adenocarcinoma. Cancer Research, 2006, 66, 8581-8589.	0.4	57
59	Activation of Mammalian Target of Rapamycin Signaling Pathway Contributes to Tumor Cell Survival in Anaplastic Lymphoma Kinase–Positive Anaplastic Large Cell Lymphoma. Cancer Research, 2006, 66, 6589-6597.	0.4	187
60	Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood, 2005, 105, 827-829.	0.6	88
61	JunB expression is a common feature of CD30+ lymphomas and lymphomatoid papulosis. Modern Pathology, 2005, 18, 1365-1370.	2.9	69
62	Inducible expression of a degradation-resistant form of p27Kip1 causes growth arrest and apoptosis in breast cancer cells. FEBS Letters, 2005, 579, 3932-3940.	1.3	36
63	Mechanisms for Lysophosphatidic Acid-induced Cytokine Production in Ovarian Cancer Cells. Journal of Biological Chemistry, 2004, 279, 9653-9661.	1.6	172
64	Macrophage migration inhibitory factor expression is increased in pituitary adenoma cell nuclei. Journal of Endocrinology, 2003, 176, 103-110.	1.2	35
65	The Role of Cyclin-dependent Kinase Inhibitor p27Kip1 in Anti-HER2 Antibody-induced G1 Cell Cycle Arrest and Tumor Growth Inhibition. Journal of Biological Chemistry, 2003, 278, 23441-23450.	1.6	132
66	Sustained Activation of JNK/p38 MAPK Pathways in Response to Cisplatin Leads to Fas Ligand Induction and Cell Death in Ovarian Carcinoma Cells. Journal of Biological Chemistry, 2003, 278, 19245-19256.	1.6	319
67	Cisplatin Resistance in an Ovarian Carcinoma Is Associated With a Defect in Programmed Cell Death Control Through XIAP Regulation. Oncology Research, 2003, 13, 399-404.	0.6	65
68	2-Acetylaminofluorene Up-regulates Rat mdr1bExpression through Generating Reactive Oxygen Species That Activate NF-I®B Pathway. Journal of Biological Chemistry, 2001, 276, 413-420.	1.6	92
69	All- <i>trans</i> -Retinoic Acid Inhibits Jun N-Terminal Kinase by Increasing Dual-Specificity Phosphatase Activity. Molecular and Cellular Biology, 1999, 19, 1973-1980.	1.1	91
70	Withdrawal of Survival Factors Results in Activation of the JNK Pathway in Neuronal Cells Leading to Fas Ligand Induction and Cell Death. Molecular and Cellular Biology, 1999, 19, 751-763.	1.1	442
71	Lasting N-Terminal Phosphorylation of c-Jun and Activation of c-Jun N-Terminal Kinases after Neuronal Injury. Journal of Neuroscience, 1998, 18, 5124-5135.	1.7	312
72	A shift in the Ligand Responsiveness of Thyroid Hormone Receptor α Induced by Heterodimerization with Retinoid X Receptor α. Molecular and Cellular Biology, 1996, 16, 219-227.	1.1	18

#	ARTICLE	IF	CITATIONS
73	A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature, 1996, 383, 453-457.	13.7	441
74	Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science, 1995, 268, 286-290.	6.0	770
75	Selective activation of the JNK signaling cascadeand c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell, 1995, 81, 1147-1157.	13.5	1,515
76	Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature, 1994, 370, 226-229.	13.7	748
77	A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro EMBO Journal, 1993, 12, 423-433.	3.5	204
78	TheDiels-Alder Chemoselectivity of 3,4,6,7-Tetramethylidenebicyclo[3.2.1]octane-2-exo, 8-syn-diyl Derivatives. Helvetica Chimica Acta, 1992, 75, 1085-1094.	1.0	1
79	Estrogen receptor level determines sex-specific in vitro transcription from the Xenopus vitellogenin promoter Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7878-7882.	3.3	34
80	Synthesis of (1RS,2RS,5SR)-3,4,6,7-tetramethylidene-8-oxobicyclo[3.2.1]oct-2-yl acetate and the chemo- and stereoselective coordination of its butadiene functions with rhodium and iron moieties. Organometallics, 1990, 9, 2785-2792.	1.1	8
81	A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter Molecular and Cellular Biology, 1989, 9, 5548-5562.	1.1	73
82	Immuno-electron microscopic identification of human estrogen receptor-DNA complexes at the estrogen-responsive element and in the first intron of a Xenopus vitellogenin gene. Journal of Molecular Biology, 1988, 204, 217-220.	2.0	10
83	Regioselective Electrophilic Additions of Bicyclo[2.2.n]alk-2-enes Controlled by Remote Epoxide Functions. Helvetica Chimica Acta, 1987, 70, 1886-1896.	1.0	15