Yingguang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9397591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectral fatigue analysis of a ship structural detail – A practical case study. International Journal of Fatigue, 2010, 32, 310-317.	5.7	37
2	Calculating crest statistics of shallow water nonlinear waves based on standard spectra and measured data at the Poseidon platform. Ocean Engineering, 2014, 87, 16-24.	4.3	28
3	Establishing robust short-term distributions of load extremes of offshore wind turbines. Renewable Energy, 2013, 57, 606-619.	8.9	22
4	Optimal threshold selection in the POT method for extreme value prediction of the dynamic responses of a Spar-type floating wind turbine. Ocean Engineering, 2017, 134, 119-128.	4.3	21
5	Efficient prediction of wave energy converters power output considering bottom effects. Ocean Engineering, 2019, 181, 89-97.	4.3	16
6	Predicting absorbed power of a wave energy converter in a nonlinear mixed sea. Renewable Energy, 2020, 153, 362-374.	8.9	16
7	Calculating nonlinear wave crest exceedance probabilities using a Transformed Rayleigh method. Coastal Engineering, 2013, 78, 1-12.	4.0	15
8	Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation. Energy, 2018, 144, 120-128.	8.8	13
9	A novel simulation method for predicting power outputs of wave energy converters. Applied Ocean Research, 2018, 80, 37-48.	4.1	12
10	A robust methodology for displaying two-dimensional environmental contours at two offshore sites. Journal of Marine Science and Technology, 2020, 25, 1063-1074.	2.9	9
11	Transformed Rayleigh distribution of trough depths for stochastic ocean waves. Coastal Engineering, 2018, 133, 106-112.	4.0	7
12	Nonlinear crest distribution for shallow water Stokes waves. Applied Ocean Research, 2016, 57, 152-161.	4.1	6
13	A path integration algorithm for stochastic structural dynamic systems. Applied Mathematics and Computation, 2014, 228, 423-431.	2.2	5
14	Robust frequency-domain identification of parametric radiation force models for a floating wind turbine. Ocean Engineering, 2015, 109, 580-594.	4.3	5
15	A novel method for predicting the power outputs of wave energy converters. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 644-652.	3.4	5
16	Bottom effects on the tower base shear forces and bending moments of a shallow water offshore wind turbine. Marine Structures, 2020, 70, 102705.	3.8	5
17	Nonlinear analysis of slow drift extreme responses of a compliant offshore structure. Acta Mechanica Sinica/Lixue Xuebao, 2009, 25, 651-657.	3.4	4
18	Comparison of a Lagrangian and a Gaussian model for power output predictions in a random sea. Renewable Energy, 2019, 134, 426-435.	8.9	4

YINGGUANG WANG

#	Article	IF	CITATIONS
19	Predicting loads and dynamic responses of an offshore wind turbine in a nonlinear mixed sea. Ships and Offshore Structures, 2021, 16, 373-385.	1.9	4
20	Bivariate kernel density estimation for environmental contours at two offshore sites. Ships and Offshore Structures, 0, , 1-11.	1.9	4
21	Predicting the performance of a floating wind energy converter in a realistic sea. Renewable Energy, 2017, 101, 637-646.	8.9	3
22	Efficient computational method for the dynamic responses of a floating wind turbine. Ships and Offshore Structures, 2020, 15, 269-279.	1.9	3
23	A novel environmental contour method for predicting long-term extreme wave conditions. Renewable Energy, 2020, 162, 926-933.	8.9	3
24	An efficient method for predicting long term extreme design forces of wave energy converters. Applied Ocean Research, 2022, 121, 103094.	4.1	3
25	A novel method for the distribution and extrapolation of extreme sea state parameters. Ocean Engineering, 2022, 251, 111102.	4.3	3
26	A second order random wave model for predicting the power performances of a wave energy converter. Acta Oceanologica Sinica, 2021, 40, 127-135.	1.0	2
27	A robust methodology for predicting extreme structural responses of offshore wind turbines. Ships and Offshore Structures, 2021, 16, 1078-1086.	1.9	1
28	A new method for predicting the extreme dynamic responses of wave energy converters. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2021, 174, 81-90.	0.2	1
29	A new method for structural safety and reliability analysis of offshore wind turbines. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 0, , 1-41.	0.2	1
30	On the robust performance analysis of coastal wave energy converters. Proceedings of Institution of Civil Engineers: Energy, 0, , 1-45.	0.6	1
31	Efficient computational method for joint distributions of heights and periods of nonlinear ocean waves. International Journal of Naval Architecture and Ocean Engineering, 2019, 11, 597-605.	2.3	0
32	A Robust Environmental Contour Method for Designing Offshore Structures. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , .	1.9	0