Vladimir Tripkovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9397462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. Journal of Physical Chemistry C, 2010, 114, 18182-18197.	1.5	990
2	Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science, 2016, 352, 73-76.	6.0	783
3	The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochimica Acta, 2010, 55, 7975-7981.	2.6	491
4	Universal transition state scaling relations for (de)hydrogenation over transition metals. Physical Chemistry Chemical Physics, 2011, 13, 20760.	1.3	363
5	Modeling the electrified solid–liquid interface. Chemical Physics Letters, 2008, 466, 68-71.	1.2	349
6	Electrochemical CO ₂ and CO Reduction on Metal-Functionalized Porphyrin-like Graphene. Journal of Physical Chemistry C, 2013, 117, 9187-9195.	1.5	260
7	The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions: An Electrochemical Impedance Spectroscopy Study. Langmuir, 2011, 27, 2058-2066.	1.6	170
8	pH in atomic scale simulations of electrochemical interfaces. Physical Chemistry Chemical Physics, 2013, 15, 10321.	1.3	127
9	Standard hydrogen electrode and potential of zero charge in density functional calculations. Physical Review B, 2011, 84, .	1.1	118
10	Intermetallic Alloys as CO Electroreduction Catalysts—Role of Isolated Active Sites. ACS Catalysis, 2014, 4, 2268-2273.	5.5	101
11	On the pH dependence of electrochemical proton transfer barriers. Catalysis Today, 2016, 262, 36-40.	2.2	91
12	Oxygen Reduction Reaction on Pt Overlayers Deposited onto a Gold Film: Ligand, Strain, and Ensemble Effect. ACS Catalysis, 2016, 6, 671-676.	5.5	79
13	Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project. Journal of Chemical Physics, 2009, 131, 014101.	1.2	77
14	The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study. Catalysis Letters, 2014, 144, 380-388.	1.4	66
15	Potential- and Rate-Determining Step for Oxygen Reduction on Pt(111). Journal of Physical Chemistry C, 2017, 121, 26785-26793.	1.5	56
16	Avoiding pitfalls in the modeling of electrochemical interfaces. Chemical Physics Letters, 2013, 555, 145-148.	1.2	50
17	From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity. ACS Catalysis, 2017, 7, 8558-8571.	5.5	50
18	Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts. Journal of Physical Chemistry C. 2014, 118, 278-289.	1.5	48

VLADIMIR TRIPKOVIC

#	Article	IF	CITATIONS
19	Comparative DFT+U and HSE Study of the Oxygen Evolution Electrocatalysis on Perovskite Oxides. Journal of Physical Chemistry C, 2018, 122, 1135-1147.	1.5	46
20	Metal Oxide‣upported Platinum Overlayers as Protonâ€Exchange Membrane Fuel Cell Cathodes. ChemCatChem, 2012, 4, 228-235.	1.8	44
21	First principles investigation of zinc-anode dissolution in zinc–air batteries. Physical Chemistry Chemical Physics, 2013, 15, 6416.	1.3	44
22	Thermodynamic assessment of the oxygen reduction activity in aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 29381-29388.	1.3	43
23	First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction. Physical Chemistry Chemical Physics, 2015, 17, 11647-11657.	1.3	41
24	Computational Screening of Doped αâ€MnO ₂ Catalysts for the Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 629-637.	3.6	40
25	Comparison between the Oxygen Reduction Reaction Activity of Pd ₅ Ce and Pt ₅ Ce: The Importance of Crystal Structure. ACS Catalysis, 2015, 5, 6032-6040.	5.5	21
26	Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions. Journal of the Electrochemical Society, 2009, 156, B1447.	1.3	16
27	Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction. Catalysis Today, 2013, 202, 168-174.	2.2	16
28	Platinum redispersion on metal oxides in low temperature fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 3279.	1.3	10
29	First principles study of (Cd, Hg, In, Tl, Sn, Pb, As, Sb, Bi, Se) modified Pt(111), Pt(100) and Pt(211) electrodes as CO oxidation catalysts. Electrochimica Acta, 2015, 168, 370-378.	2.6	7
30	Formic Acid Oxidation at Platinum-Bismuth Clusters. Journal of the Electrochemical Society, 2014, 161, H547-H554.	1.3	5
31	Theoretical Study of the Structural Stability and the Electronic Properties of Al _m H _n Clusters. Journal of Computational and Theoretical Nanoscience, 2011, 8, 609-615.	0.4	0
32	Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt. ECS Meeting Abstracts, 2016, , .	0.0	0
33	Tailoring the Performance of Oxides for the Oxygen Evolution Reaction. ECS Meeting Abstracts, 2016, ,	0.0	0
34	(Invited) Genetic Algorithms and DFT for Accelerated Design of Nanoalloys. ECS Meeting Abstracts, 2016, , .	0.0	0
35	Understanding and Tailoring the Performance of Transition Metal Oxides for the Oxygen Evolution Reaction. ECS Meeting Abstracts, 2017, , .	0.0	0
36	Understanding and Tailoring the Performance of Transition Metal Oxides for the Oxygen Evolution Reaction. ECS Meeting Abstracts, 2018, , .	0.0	0