Yonggang Shangguan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9397228/publications.pdf

Version: 2024-02-01

		567281	580821
32	672	15	25
papers	citations	h-index	g-index
32	32	32	553
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Adjustable brittle-ductile transition behavior and rheological behavior of polypropylene random copolymer nanocomposites through well interfacial-loaded nanoparticles. Composites Part B: Engineering, 2022, 238, 109939.	12.0	8
2	Ultra-high impact PPR composites at low-temperature through enhanced preferential loading of nanoparticles at polymeric interface induced by properly vulcanized rubber dispersed phase. Composites Science and Technology, 2022, 227, 109593.	7.8	5
3	Toughening mechanism of PP/EPR/SiO2 composites with superior low-temperature toughness. Composites Science and Technology, 2021, 207, 108691.	7.8	28
4	Effects of Crosslinking and Silicone Coupling Agent on Properties of EVA Composite Hot Melt Adhesive. Polymers, 2021, 13, 4101.	4. 5	8
5	Dynamics and Rheological Behavior of Chitosan-Grafted-Polyacrylamide in Aqueous Solution upon Heating. Polymers, 2020, 12, 916.	4.5	4
6	Toughening mechanism of polypropylene bends with polymer particles in core-shell structure: Equivalent rubber content effect related to core-shell interfacial strength. Polymer, 2019, 178, 121602.	3.8	29
7	A facile fabrication of polypropylene composites with excellent low-temperature toughness through tuning interfacial area between matrix and rubber dispersion by silica nanoparticles located at the interface. Composites Science and Technology, 2019, 184, 107846.	7.8	17
8	Ferrocene-Modified Polyelectrolyte Film-Coated Electrode and Its Application in Glucose Detection. Polymers, 2019, 11, 551.	4. 5	14
9	A facile and environmentally friendly approach to fabricate hybrid crosslinked nitrile butadiene rubber with comprehensively improved mechanical performances by incorporating sacrificial ionic bonds. Polymer, 2019, 161, 55-63.	3.8	10
10	Fabrication of polypropylene blends with excellent lowâ€temperature toughness and balanced toughnessâ€rigidity by a combination of EPR and SEEPS. Journal of Applied Polymer Science, 2018, 135, 45714.	2.6	17
11	Thermo-thickening behavior and its mechanism in a chitosan- <i>graft</i> -polyacrylamide aqueous solution. Soft Matter, 2018, 14, 6667-6677.	2.7	8
12	A new approach to fabricate polypropylene alloy with excellent low-temperature toughness and balanced toughness-rigidity through unmatched thermal expansion coefficients between components. Polymer, 2017, 112, 318-324.	3.8	43
13	Rheology of nitrile rubber with hybrid crosslinked network composed of covalent bonding and hydrogen bonding. RSC Advances, 2017, 7, 15978-15985.	3.6	21
14	New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation. Polymers, 2017, 9, 567.	4. 5	33
15	Toughening mechanism in impact polypropylene copolymer containing a \hat{I}^2 -nucleating agent. RSC Advances, 2016, 6, 23117-23125.	3.6	10
16	Correlation between impact properties and phase structure in impact polypropylene copolymer. Materials & Design, 2015, 69, 56-63.	5.1	25
17	Balanced toughening and strengthening of ethylene–propylene rubber toughened isotactic polypropylene using a poly(styrene-b-ethylene–propylene) diblock copolymer. RSC Advances, 2015, 5, 20831-20837.	3. 6	30
18	Toughening with little rigidity loss and mechanism for modified polypropylene by polymer particles with core–shell structure. Polymer, 2015, 65, 81-92.	3.8	50

#	Article	IF	Citations
19	Simultaneously enhancing strength and toughness for impact polypropylene copolymers by regulating the dispersed phase with high density polyethylene. RSC Advances, 2014, 4, 58999-59008.	3.6	14
20	Control of multilayered core–shell dispersed particles in HPP/EPR/EbP blends and its influences on crystallization and dynamic mechanical behavior. Polymer, 2014, 55, 6176-6185.	3.8	19
21	Destruction mechanism of core–shell particles in impact polypropylene copolymer during short molten-state annealing. RSC Advances, 2014, 4, 57935-57944.	3.6	4
22	Shear induced self-thickening in chitosan-grafted polyacrylamide aqueous solution. Soft Matter, 2013, 9, 1835-1843.	2.7	18
23	Multiregion Shear Thinning for Subsequent Static Self-Thickening in Chitosan- <i>graft</i> -polyacrylamide Aqueous Solution. Journal of Physical Chemistry B, 2013, 117, 15111-15121.	2.6	8
24	Nonlinear phaseâ€separation behavior of poly(methyl methacrylate)/poly(styreneâ€∢i>coâ€maleic) Tj ETQq0	0 <u>9.1</u> gBT /	Oyerlock 10
25	Effects of molecular entanglement on molecular dynamics and phase-separation kinetics of poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) blends. Polymer, 2012, 53, 1418-1427.	3.8	29
26	Influence of molten-state annealing on the phase structure and crystallization behaviour of high impact polypropylene copolymer. Polymer, 2011, 52, 2956-2963.	3.8	43
27	Morphology, microstructure and compatibility of impact polypropylene copolymer. Polymer, 2010, 51, 4969-4977.	3.8	104
28	Rheological properties of redox-responsive, associative ferrocene-modified branched poly(ethylene) Tj ETQq0 0 0	rgBT /Ove 2.7	erlock 10 Tf 5
29	TIME AND TEMPERATURE DEPENDENCE OF PHASE-SEPARATION BEHAVIOR FOR POLY(<i>N</i> -METHYL) Tj ETQo	11.0.784 0.0	13
30	Investigation on LCST behavior of a new amorphous/crystalline polymer blend: Poly(<i>n</i> â€methyl) Tj ETQq0 46, 1923-1931.	0 0 rgBT / 2.1	Overlock 10 1 8
31	Kinetic analysis on spherulite growth rate of polypropylene catalloys. Polymer, 2007, 48, 4567-4577.	3.8	23
32	Effect of sacrificial bond on molecular dynamics and rheological behavior of hybrid butadieneâ€styreneâ€vinylpyridine rubber vulcanizates with reversible sacrificial network. Journal of Polymer Science, 0, , .	3.8	1