
Rita Carrotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9397093/publications.pdf Version: 2024-02-01

RITA CARROTTA

#	Article	IF	CITATIONS
1	Small Angle X-ray Scattering Sensing Membrane Composition: The Role of Sphingolipids in Membrane-Amyloid β-Peptide Interaction. Biology, 2022, 11, 26.	1.3	3
2	Isolation of extracellular vesicles from microalgae: towards the production of sustainable and natural nanocarriers of bioactive compounds. Biomaterials Science, 2021, 9, 2917-2930.	2.6	34
3	Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. Journal of Extracellular Vesicles, 2021, 10, e12081.	5.5	45
4	Light Scattering as an Easy Tool to Measure Vesicles Weight Concentration. Membranes, 2020, 10, 222.	1.4	7
5	Amyloid β-peptide interaction with GM1 containing model membrane. Advances in Biomembranes and Lipid Self-Assembly, 2020, 32, 1-24.	0.3	Ο
6	Inhibition of Aβ _{1–42} Fibrillation by Chaperonins: Human Hsp60 Is a Stronger Inhibitor than Its Bacterial Homologue GroEL. ACS Chemical Neuroscience, 2019, 10, 3565-3574.	1.7	16
7	Amyloid β-Peptide Interaction with Membranes: Can Chaperones Change the Fate?. Journal of Physical Chemistry B, 2019, 123, 631-638.	1.2	13
8	The effects of pressure on the energy landscape of proteins. Scientific Reports, 2018, 8, 2037.	1.6	17
9	Biophysical characterization of asolectin-squalene liposomes. Colloids and Surfaces B: Biointerfaces, 2018, 170, 479-487.	2.5	8
10	Investigation on different chemical stability of mitochondrial Hsp60 and its precursor. Biophysical Chemistry, 2017, 229, 31-38.	1.5	6
11	Structure and Stability of Hsp60 and Groel in Solution. Biophysical Journal, 2016, 110, 368a.	0.2	1
12	Investigation on Structural Features and Antiaggregation Properties of Chaperonins and Chaperon Like Molecules. Biophysical Journal, 2016, 110, 213a-214a.	0.2	0
13	Stability and disassembly properties of human naÃ⁻ve Hsp60 and bacterial GroEL chaperonins. Biophysical Chemistry, 2016, 208, 68-75.	1.5	8
14	Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains. Biophysical Chemistry, 2016, 208, 9-16.	1.5	45
15	α-Casein Inhibits Insulin Amyloid Formation by Preventing the Onset of Secondary Nucleation Processes. Journal of Physical Chemistry Letters, 2014, 5, 3043-3048.	2.1	24
16	Human Hsp60 with Its Mitochondrial Import Signal Occurs in Solution as Heptamers and Tetradecamers Remarkably Stable over a Wide Range of Concentrations. PLoS ONE, 2014, 9, e97657.	1.1	46
17	Intrinsic Disorder and Chaperon-Like Activity of Different Caseins. Biophysical Journal, 2013, 104, 389a.	0.2	0
18	Different effects of Alzheimer's peptide Aβ(1–40) oligomers and fibrils on supported lipid membranes. Biophysical Chemistry, 2013, 182, 23-29.	1.5	51

RITA CARROTTA

#	Article	IF	CITATIONS
19	Entrapment of Aβ1â~'40peptide in unstructured aggregates. Journal of Physics Condensed Matter, 2012, 24, 244103.	0.7	7
20	α-Casein Inhibition Mechanism in Concanavalin A Aggregation Process. Journal of Physical Chemistry B, 2012, 116, 14700-14707.	1.2	14
21	Inhibiting effect of αs1-casein on Aβ1–40 fibrillogenesis. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 124-132.	1.1	49
22	Amyloid Fibrils Formation of Concanavalin A at Basic pH. Journal of Physical Chemistry B, 2011, 115, 2691-2698.	1.2	22
23	Corrigendum to "Kinetics of Different Processes in Human Insulin Amyloid Formation―[J. Mol. Biol. 366/1 (2007) 258-274]. Journal of Molecular Biology, 2011, 406, 354.	2.0	3
24	Insulinâ€activated Akt rescues Aβ oxidative stressâ€induced cell death by orchestrating molecular trafficking. Aging Cell, 2011, 10, 832-843.	3.0	64
25	Concanavalin A aggregation and toxicity on cell cultures. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 173-183.	1.1	31
26	Insulin Promotes Survival of Amyloid-Beta Oligomers Neuroblastoma Damaged Cells via Caspase 9 Inhibition and Hsp70 Upregulation. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-8.	3.0	29
27	The sea urchin embryo: A model to study Alzheimer's beta amyloid induced toxicity. Archives of Biochemistry and Biophysics, 2009, 483, 120-126.	1.4	17
28	Aβ Oligomers and Fibrillar Aggregates Induce Different Apoptotic Pathways in LAN5 Neuroblastoma Cell Cultures. Biophysical Journal, 2009, 96, 4200-4211.	0.2	93
29	Protein stability modulated by a conformational effector: effects of trifluoroethanol on bovine serum albumin. Physical Chemistry Chemical Physics, 2009, 11, 4007.	1.3	46
30	Conformational characterization of oligomeric intermediates and aggregates in β-lactoglobulin heat aggregation. Protein Science, 2008, 10, 1312-1318.	3.1	117
31	Kinetics of Different Processes in Human Insulin Amyloid Formation. Journal of Molecular Biology, 2007, 366, 258-274.	2.0	163
32	Employment of Cationic Solid-Lipid Nanoparticles as RNA Carriers. Bioconjugate Chemistry, 2007, 18, 302-308.	1.8	47
33	Large size fibrillar bundles of the Alzheimer amyloid β-protein. European Biophysics Journal, 2007, 36, 701-709.	1.2	13
34	Toxicity of recombinant βâ€amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus. FASEB Journal, 2006, 20, 1916-1917.	0.2	50
35	Protofibril Formation of Amyloid β-Protein at Low pH via a Non-cooperative Elongation Mechanism. Journal of Biological Chemistry, 2005, 280, 30001-30008.	1.6	106
36	Small-angle X-ray scattering studies of metastable intermediates of ?-lactoglobulin isolated after heat-induced aggregation. Biopolymers, 2003, 70, 377-390.	1.2	18

#	Article	IF	CITATIONS
37	Thermal broadening of Lb band of "trehalose coated―tyrosine and phenylalanine. AIP Conference Proceedings, 2000, , .	0.3	0
38	Characterization and Isolation of Intermediates in \hat{l}^2 -Lactoglobulin Heat Aggregation at High pH. Biophysical Journal, 2000, 79, 1030-1038.	0.2	90
39	Alzheimer's Disease and Type 2 Diabetes: Different Pathologies and Same Features. , 0, , .		3