Da-Qiang Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9396516/publications.pdf

Version: 2024-02-01

409 papers 33,540 citations

92 h-index 165 g-index

428 all docs 428 docs citations

times ranked

428

20861 citing authors

#	Article	IF	CITATIONS
1	Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 2009, 253, 3042-3066.	9.5	1,422
2	Tuning the Topology and Functionality of Metalâ^'Organic Frameworks by Ligand Design. Accounts of Chemical Research, 2011, 44, 123-133.	7.6	956
3	Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake. Journal of the American Chemical Society, 2008, 130, 1012-1016.	6.6	813
4	An Isoreticular Series of Metal–Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2010, 49, 5357-5361.	7.2	677
5	A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2016, 138, 3302-3305.	6.6	628
6	Two-Dimensional Metal–Organic Framework with Wide Channels and Responsive Turn-On Fluorescence for the Chemical Sensing of Volatile Organic Compounds. Journal of the American Chemical Society, 2014, 136, 7241-7244.	6.6	593
7	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO ₂ Separation. Chemistry of Materials, 2016, 28, 1277-1285.	3.2	541
8	Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 2015, 6, 5979.	5.8	540
9	Highly Stable Porous Polymer Networks with Exceptionally High Gasâ€Uptake Capacities. Advanced Materials, 2011, 23, 3723-3725.	11.1	528
10	Sulfonate-Grafted Porous Polymer Networks for Preferential CO ₂ Adsorption at Low Pressure. Journal of the American Chemical Society, 2011, 133, 18126-18129.	6.6	522
11	Polyamineâ€Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas. Angewandte Chemie - International Edition, 2012, 51, 7480-7484.	7.2	518
12	Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. Chemistry of Materials, 2010, 22, 5964-5972.	3.2	512
13	Reversible Alteration of CO ₂ Adsorption upon Photochemical or Thermal Treatment in a Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 99-102.	6.6	441
14	The current status of hydrogen storage in metal–organic frameworks—updated. Energy and Environmental Science, 2011, 4, 2721.	15.6	429
15	The current status of hydrogen storage in metal–organic frameworks. Energy and Environmental Science, 2008, 1, 222.	15.6	411
16	Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO ₂ Photoreduction with H ₂ O. Angewandte Chemie - International Edition, 2019, 58, 12392-12397.	7.2	360
17	Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 2014, 5, 5723.	5.8	332
18	Surface Functionalization of Porous Coordination Nanocages Via Click Chemistry and Their Application in Drug Delivery. Advanced Materials, 2011, 23, 90-93.	11.1	329

#	Article	IF	CITATIONS
19	Stabilization of Metalâ^'Organic Frameworks with High Surface Areas by the Incorporation of Mesocavities with Microwindows. Journal of the American Chemical Society, 2009, 131, 9186-9188.	6.6	316
20	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	11.1	310
21	Enhancing H ₂ Uptake by "Closeâ€Packing―Alignment of Open Copper Sites in Metal–Organi Frameworks. Angewandte Chemie - International Edition, 2008, 47, 7263-7266.	ic 7.2	306
22	Optimizing Multivariate Metal–Organic Frameworks for Efficient C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2020, 142, 8728-8737.	6.6	289
23	A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nature Communications, 2015, 6, 7575.	5.8	288
24	Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature Communications, 2017, 8, 1233.	5.8	286
25	Functional Mesoporous Metalâ^'Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorganic Chemistry, 2010, 49, 11637-11642.	1.9	283
26	A Coordinatively Linked Yb Metal–Organic Framework Demonstrates High Thermal Stability and Uncommon Gasâ€Adsorption Selectivity. Angewandte Chemie - International Edition, 2008, 47, 4130-4133.	7.2	280
27	Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18505-18512.	4.0	259
28	An Ultrastable and Easily Regenerated Hydrogenâ€Bonded Organic Molecular Framework with Permanent Porosity. Angewandte Chemie - International Edition, 2017, 56, 2101-2104.	7.2	254
29	Metalâ^'Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes. Chemistry of Materials, 2008, 20, 3145-3152.	3.2	248
30	Carbon dioxide capture in amorphous porous organic polymers. Journal of Materials Chemistry A, 2017, 5, 1334-1347.	5. 2	236
31	Room Temperature Batch and Continuous Flow Synthesis of Water-Stable Covalent Organic Frameworks (COFs). Chemistry of Materials, 2016, 28, 5095-5101.	3.2	228
32	A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. Chemical Science, 2013, 4, 1484.	3.7	202
33	Exceptionally Robust In-Based Metal–Organic Framework for Highly Efficient Carbon Dioxide Capture and Conversion. Inorganic Chemistry, 2016, 55, 3558-3565.	1.9	199
34	Microporous Lanthanide Metal-Organic Frameworks Containing Coordinatively Linked Interpenetration: Syntheses, Gas Adsorption Studies, Thermal Stability Analysis, and Photoluminescence Investigation. Inorganic Chemistry, 2009, 48, 2072-2077.	1.9	189
35	Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Science Advances, 2016, 2, e1600480.	4.7	188
36	Poly(polyoxotungstate)s with 20 Nickel Centers: From Nanoclusters to Oneâ€Dimensional Chains. Angewandte Chemie - International Edition, 2009, 48, 7176-7179.	7.2	187

#	Article	IF	Citations
37	Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO ₂ to CH ₄ . Journal of the American Chemical Society, 2021, 143, 3808-3816.	6.6	187
38	Direct Solarâ€toâ€Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 12716-12720.	7.2	184
39	Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Moâ^'Mo Dimers. Journal of the American Chemical Society, 2010, 132, 17599-17610.	6.6	182
40	A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices. Chemical Communications, 2003, , 2580.	2.2	180
41	Copper Complex Cation Templated Gadolinium(III)-Isophthalate Frameworks. Angewandte Chemie - International Edition, 2004, 43, 5665-5668.	7.2	174
42	New Lanthanide Hybrid as Clustered Infinite Nanotunnel with 3D Lnâ^'Oâ^'Ln Framework and (3,4)-Connected Net. Inorganic Chemistry, 2007, 46, 1171-1176.	1.9	169
43	Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: I. from isolated cluster to 1-D chain. Chemical Communications, 2007, , 1858.	2.2	166
44	Synthesis of a Sulfonated Twoâ€Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion. ChemSusChem, 2015, 8, 3208-3212.	3.6	163
45	An unusual case of symmetry-preserving isomerism. Chemical Communications, 2010, 46, 1329.	2.2	162
46	Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong BrÃ,nsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 2016, 28, 2659-2667.	3.2	160
47	Chiral induction in covalent organic frameworks. Nature Communications, 2018, 9, 1294.	5.8	160
48	Process-Tracing Study on the Postassembly Modification of Highly Stable Zirconium Metal–Organic Cages. Journal of the American Chemical Society, 2018, 140, 6231-6234.	6.6	159
49	Two polymeric 36-metal pure lanthanide nanosize clusters. Chemical Science, 2013, 4, 3104.	3.7	154
50	Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks. Journal of Physical Chemistry C, 2013, 117, 4057-4061.	1.5	153
51	Control the Structure of Zr-Tetracarboxylate Frameworks through Steric Tuning. Journal of the American Chemical Society, 2017, 139, 16939-16945.	6.6	153
52	Three Novel Cadmium(II) Complexes from Different Conformational 1,1'-Biphenyl-3,3'-dicarboxylate. Crystal Growth and Design, 2005, 5, 129-135.	1.4	152
53	Evolution of Luminescent Supramolecular Lanthanide M _{2<i>n</i>} L _{3<i>n</i>} Complexes from Helicates and Tetrahedra to Cubes. Journal of the American Chemical Society, 2017, 139, 8237-8244.	6.6	152
54	Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nature Communications, 2017, 8, 1142.	5.8	152

#	Article	IF	CITATIONS
55	Three-Dimensional Large-Pore Covalent Organic Framework with stp Topology. Journal of the American Chemical Society, 2020, 142, 13334-13338.	6.6	149
56	Highly selective carbon dioxide adsorption in a water-stable indium–organic framework material. Chemical Communications, 2012, 48, 9696.	2.2	148
57	A Oneâ€Dimensional π–d Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity in Negishi Coupling. Angewandte Chemie - International Edition, 2019, 58, 14731-14739.	7.2	144
58	Two 3D Porous Cadmium Tetrazolate Frameworks with Hexagonal Tunnels. Inorganic Chemistry, 2006, 45, 5760-5766.	1.9	142
59	A NbO-type metal–organic framework derived from a polyyne-coupled di-isophthalate linker formed in situ. Chemical Communications, 2010, 46, 4196.	2.2	139
60	Highly Potent Bactericidal Activity of Porous Metalâ€Organic Frameworks. Advanced Healthcare Materials, 2012, 1, 225-238.	3.9	136
61	A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons for oil spill cleanup. Chemical Communications, 2013, 49, 1533.	2.2	136
62	Microporous Hexanuclear Ln(III) Cluster-Based Metal–Organic Frameworks: Color Tunability for Barcode Application and Selective Removal of Methylene Blue. Inorganic Chemistry, 2017, 56, 511-517.	1.9	136
63	In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg(<scp>ii</scp>) from water. Journal of Materials Chemistry A, 2016, 4, 15370-15374.	5.2	135
64	A facile synthesis of microporous organic polymers for efficient gas storage and separation. Journal of Materials Chemistry A, 2015, 3, 3051-3058.	5.2	133
65	A regenerative metal–organic framework for reversible uptake of Cd(<scp>ii</scp>): from effective adsorption to in situ detection. Chemical Science, 2016, 7, 5983-5988.	3.7	133
66	Syntheses and Characterizations of Two 3D Cobaltâ^'Organic Frameworks from 2D Honeycomb Building Blocks. Crystal Growth and Design, 2005, 5, 1849-1855.	1.4	131
67	Truncated octahedral coordination cage incorporating six tetranuclear-metal building blocks and twelve linear edges. Chemical Science, 2012, 3, 2321.	3.7	131
68	Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection. Journal of Hazardous Materials, 2018, 344, 283-290.	6.5	129
69	New 3-D Chiral Framework of Indium with 1,3,5-Benzenetricarboxylate. Inorganic Chemistry, 2005, 44, 73-76.	1.9	128
70	Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification. Chemistry of Materials, 2019, 31, 146-160.	3.2	125
71	Covalent Organic Framework Hosting Metalloporphyrinâ€Based Carbon Dots for Visibleâ€Lightâ€Driven Selective CO ₂ Reduction. Advanced Functional Materials, 2020, 30, 2002654.	7.8	125
72	Isomer separation, conformation control of flexible cyclohexanedicarboxylate ligand in cadmium complexes. Chemical Communications, 2004, , 2104-2105.	2.2	124

#	Article	IF	Citations
73	Control over Interpenetration in Lanthanideâ 'Organic Frameworks: Synthetic Strategy and Gas-Adsorption Properties. Inorganic Chemistry, 2010, 49, 7605-7607.	1.9	122
74	In Situ Construction of a Coordination Zirconocene Tetrahedron. Inorganic Chemistry, 2013, 52, 13815-13817.	1.9	122
75	An Unprecedented Pillarâ€Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angewandte Chemie - International Edition, 2021, 60, 7547-7552.	7.2	120
76	Confinement of Aggregation-Induced Emission Molecular Rotors in Ultrathin Two-Dimensional Porous Organic Nanosheets for Enhanced Molecular Recognition. Journal of the American Chemical Society, 2018, 140, 4035-4046.	6.6	119
77	Preparation and Gas Adsorption Studies of Three Mesh-Adjustable Molecular Sieves with a Common Structure. Journal of the American Chemical Society, 2009, 131, 6445-6451.	6.6	117
78	Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. Journal of Materials Chemistry A, 2017, 5, 8954-8963.	5.2	117
79	Syntheses and Crystal Structures of Copper(II) Coordination Polymers Comprising Discrete Helical Chains. Crystal Growth and Design, 2005, 5, 251-256.	1.4	115
80	In Situ Formed White-Light-Emitting Lanthanide–Zinc–Organic Frameworks. Inorganic Chemistry, 2012, 51, 1201-1203.	1.9	115
81	1D Tube, 2D Layer, and 3D Framework Derived from a New Series of Metal(II)â^5-Aminodiacetic Isophthalate Coordination Polymers. Crystal Growth and Design, 2006, 6, 1168-1174.	1.4	113
82	Combination of Lacunary Polyoxometalates and High-Nuclear Transition Metal Clusters under Hydrothermal Conditions. 3. Structure and Characterization of [Cu(enMe)2]2{[Cu(enMe)2(H2O)]2[Cu6(enMe)2(B-a-SiW9O34)2]}·4H2O. Inorganic Chemistry, 2007, 46, 4569-4574.	1.9	113
83	Regulating C ₂ H ₂ and CO ₂ Storage and Separation through Pore Environment Modification in a Microporous Ni-MOF. ACS Sustainable Chemistry and Engineering, 2019, 7, 2134-2140.	3.2	113
84	Electricâ€Field Assisted Inâ€Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 13101-13108.	7.2	108
85	A Highly Porous and Robust (3,3,4) onnected Metal–Organic Framework Assembled with a 90° Bridgingâ€Angle Embedded Octacarboxylate Ligand. Angewandte Chemie - International Edition, 2012, 51, 1580-1584.	7.2	106
86	A Highly Symmetric Metal–Organic Framework Based on a Propeller-Like Ru-Organic Metalloligand for Photocatalysis and Explosives Detection. Crystal Growth and Design, 2013, 13, 5466-5472.	1.4	104
87	Ligand-enabled site-selectivity in a versatile rhodium(ii)-catalysed aryl C–H carboxylation with CO2. Nature Catalysis, 2018, 1, 469-478.	16.1	104
88	Anion Effect on the Structural Conformation of Tetranuclear Cadmium(II) Complexes. Crystal Growth and Design, 2006, 6, 1351-1360.	1.4	102
89	Waste to MOFs: sustainable linker, metal, and solvent sources for value-added MOF synthesis and applications. Green Chemistry, 2020, 22, 4082-4104.	4.6	101
90	Surface functionalization of metal–organic polyhedron for homogeneous cyclopropanation catalysis. Chemical Communications, 2011, 47, 4968.	2.2	98

#	Article	IF	CITATIONS
91	Azo-Bridged Calix[4]resorcinarene-Based Porous Organic Frameworks with Highly Efficient Enrichment of Volatile Iodine. ACS Sustainable Chemistry and Engineering, 2018, 6, 17402-17409.	3.2	98
92	Facile fabrication of cost-effective porous polymer networks for highly selective CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 3252-3256.	5.2	96
93	The 3D Channel Framework Based on Indium(III)-btec, and Its Ion-Exchange Properties (btec =) Tj ETQq1 1 0.7843	14 rgBT /C 1.0	Dyerlock 10 94
94	A Novel Bilayer Cobalt(II)â^'Organic Framework with Nanoscale Channels Accommodating Large Organic Molecules. Inorganic Chemistry, 2003, 42, 4486-4488.	1.9	92
95	A 3D Porous Cobaltâ^'Organic Framework Exhibiting Spin-Canted Antiferromagnetism and Field-Induced Spin-Flop Transition. Inorganic Chemistry, 2007, 46, 9609-9615.	1.9	91
96	Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage. Chemical Communications, 2010, 46, 7352.	2.2	91
97	Cooperation of Three Chromophores Generates the Waterâ€Resistant Nitrate Nonlinear Optical Material Bi ₃ TeO ₆ OH(NO ₃) ₂ . Angewandte Chemie - International Edition, 2017, 56, 540-544.	7.2	91
98	Cageâ€Like Porous Materials with Simultaneous High C ₂ H ₂ Storage and Excellent C ₂ H ₂ /CO ₂ Separation Performance. Angewandte Chemie - International Edition, 2021, 60, 10828-10832.	7.2	90
99	Unprecedented Marriage of a Cationic Pentanuclear Cluster and a 2D Polymeric Anionic Layer Based on a Flexible Tripodal Ligand and a Cu ^{II} Ion. Inorganic Chemistry, 2010, 49, 769-771.	1.9	89
100	Comparison of the Effect of Functional Groups on Gas-Uptake Capacities by Fixing the Volumes of Cages A and B and Modifying the Inner Wall of Cage C in rht-Type MOFs. Inorganic Chemistry, 2012, 51, 10350-10355.	1.9	89
101	Robust Metal–Organic Framework with An Octatopic Ligand for Gas Adsorption and Separation: Combined Characterization by Experiments and Molecular Simulation. Chemistry of Materials, 2012, 24, 18-25.	3.2	88
102	Ferroelastic phase transition and switchable dielectric behavior associated with ordering of molecular motion in a perovskite-like architectured supramolecular cocrystal. Journal of Materials Chemistry C, 2013, 1, 2561.	2.7	88
103	Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO ₂ Photoreduction with H ₂ O. Angewandte Chemie, 2019, 131, 12522-12527.	1.6	88
104	Diversity of Coordination Architecture of Copper(II)â^'5-Sulfoisophthalic Acid:Â Synthesis, Crystal Structures, and Characterization. Crystal Growth and Design, 2007, 7, 1832-1843.	1.4	86
105	A stepwise transition from microporosity to mesoporosity in metal–organic frameworks by thermal treatment. Chemical Science, 2011, 2, 103-106.	3.7	86
106	A Prototypical Zeolitic Lanthanideâ^'Organic Framework with Nanotubular Structure. Crystal Growth and Design, 2008, 8, 166-168.	1.4	85
107	Targeted synthesis of a large triazine-based [4+6] organic molecular cage: structure, porosity and gas separation. Chemical Communications, 2015, 51, 1976-1979.	2.2	85
108	Syntheses and structures of two novel copper complexes constructed from unusual planar tetracopper(ii) SBUs. Chemical Communications, 2003, , 1528.	2.2	84

#	Article	IF	Citations
109	A Corroleâ€Based Covalent Organic Framework Featuring Desymmetrized Topology. Angewandte Chemie - International Edition, 2020, 59, 4354-4359.	7.2	84
110	Tuning the Topology of Three-Dimensional Covalent Organic Frameworks via Steric Control: From pts to Unprecedented ljh . Journal of the American Chemical Society, 2021, 143, 7279-7284.	6.6	84
111	A nanotubular metal–organic framework with permanent porosity: structure analysis and gas sorption studies. Chemical Communications, 2009, , 4049.	2.2	83
112	Porous Metal-Organic Frameworks Based on an Anthracene Derivative: Syntheses, Structure Analysis, and Hydrogen Sorption Studies. Inorganic Chemistry, 2009, 48, 5263-5268.	1.9	81
113	Aggregation-Induced Emission-Responsive Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 6706-6720.	3.2	81
114	Reticular Chemistry in the Construction of Porous Organic Cages. Journal of the American Chemical Society, 2020, 142, 18060-18072.	6.6	81
115	Copper-catalyzed 1,4-alkylarylation of 1,3-enynes with masked alkyl electrophiles. Chemical Science, 2019, 10, 3632-3636.	3.7	80
116	Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal–organic framework. Sensors and Actuators B: Chemical, 2021, 330, 129314.	4.0	79
117	Pentanuclear Yb(III) cluster-based metal-organic frameworks as heterogeneous catalysts for CO2 conversion. Applied Catalysis B: Environmental, 2017, 219, 603-610.	10.8	78
118	A Reusable MOFâ€Supported Singleâ€Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of <i>o</i> àêAlkynylanilines. Angewandte Chemie - International Edition, 2019, 58, 7687-7691.	7.2	78
119	Microporous Metal–Organic Framework Based on Ligand-Truncation Strategy with High Performance for Gas Adsorption and Separation. Inorganic Chemistry, 2017, 56, 10215-10219.	1.9	77
120	Tuning the Formations of Metal–Organic Frameworks by Modification of Ratio of Reactant, Acidity of Reaction System, and Use of a Secondary Ligand. Crystal Growth and Design, 2012, 12, 281-288.	1.4	76
121	Covalent Heme Framework as a Highly Active Heterogeneous Biomimetic Oxidation Catalyst. Chemistry of Materials, 2014, 26, 1639-1644.	3.2	76
122	Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Scientific Reports, 2014, 4, 5711.	1.6	76
123	A Highly Symmetric Porous Framework with Multi-intersecting Open Channels. Crystal Growth and Design, 2007, 7, 1712-1715.	1.4	74
124	Pressure-Responsive Curvature Change of a "Rigid―Geodesic Ligand in a (3,24)-Connected Mesoporous Metal–Organic Framework. Inorganic Chemistry, 2011, 50, 10528-10530.	1.9	74
125	Metalloporphyrin-based covalent organic frameworks composed of the electron donor-acceptor dyads for visible-light-driven selective CO2 reduction. Science China Chemistry, 2020, 63, 1289-1294.	4.2	73
126	Formation of an Infinite Three-Dimensional Water Network by the Hierarchic Assembly of Bilayer Water Nanotubes of Octamers. Crystal Growth and Design, 2007, 7, 1385-1387.	1.4	72

#	Article	IF	Citations
127	Reversible Tuning Hydroquinone/Quinone Reaction in Metal–Organic Framework: Immobilized Molecular Switches in Solid State. Chemistry of Materials, 2015, 27, 6426-6431.	3.2	72
128	Investigation of Gas Adsorption Performances and H2Affinities of Porous Metal-Organic Frameworks with Different Entatic Metal Centers. Inorganic Chemistry, 2009, 48, 5398-5402.	1.9	71
129	Precisely Embedding Active Sites into a Mesoporous Zr-Framework through Linker Installation for High-Efficiency Photocatalysis. Journal of the American Chemical Society, 2020, 142, 15020-15026.	6.6	71
130	A recyclable fluorescent covalent organic framework for exclusive detection and removal of mercury(II). Chemical Engineering Journal, 2020, 401, 126139.	6.6	71
131	Pb(ii) metal–organic nanotubes based on cyclodextrins: biphasic synthesis, structures and properties. Chemical Science, 2012, 3, 2282.	3.7	70
132	Sequential Transformation of Zirconium(IV)â€MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers. Angewandte Chemie - International Edition, 2018, 57, 12578-12583.	7.2	70
133	Tuning the Ionicity of Stable Metal–Organic Frameworks through Ionic Linker Installation. Journal of the American Chemical Society, 2019, 141, 3129-3136.	6.6	70
134	Efficient ethylene purification by a robust ethane-trapping porous organic cage. Nature Communications, 2021, 12, 3703.	5.8	70
135	Chlorineâ€Induced Assembly of a Cationic Coordination Cage with a Î⅓ ₅ â€Carbonatoâ€Bridged Mn ^{ll} ₂₄ Core. Chemistry - A European Journal, 2012, 18, 5536-5540.	1.7	68
136	From Coordination Cages to a Stable Crystalline Porous Hydrogenâ€Bonded Framework. Chemistry - A European Journal, 2017, 23, 4774-4777.	1.7	68
137	Self-Assembly of Three CdII- and Cull-Containing Coordination Polymers from 4,4′-Dipyridyl Disulfide. European Journal of Inorganic Chemistry, 2003, 2003, 3623-3632.	1.0	67
138	Switchable Dielectric Phase Transition Induced by Ordering of Twisting Motion in 1,4-Diazabicyclo[2.2.2]octane Chlorodifluoroacetate. Crystal Growth and Design, 2013, 13, 2081-2086.	1.4	67
139	Incorporation of In ₂ S ₃ Nanoparticles into a Metal–Organic Framework for Ultrafast Removal of Hg from Water. Inorganic Chemistry, 2018, 57, 4891-4897.	1.9	67
140	Metal-Organic Cages (MOCs): From Discrete to Cage-based Extended Architectures. Chemistry Letters, 2020, 49, 28-53.	0.7	67
141	A Large-Surface-Area Boracite-Network-Topology Porous MOF Constructed from a Conjugated Ligand Exhibiting a High Hydrogen Uptake Capacity. Inorganic Chemistry, 2009, 48, 7519-7521.	1.9	66
142	Self-Assembly of Thiacalix[4]arene-Supported Nickel(II)/Cobalt(II) Complexes Sustained by in Situ Generated 5-Methyltetrazolate Ligand. Crystal Growth and Design, 2012, 12, 3335-3341.	1.4	66
143	Polymeric double-anion templated Er ₄₈ nanotubes. Chemical Communications, 2014, 50, 1113-1115.	2.2	66
144	Rational Design and Synthesis of Porous Polymer Networks: Toward High Surface Area. Chemistry of Materials, 2014, 26, 4589-4597.	3.2	66

#	Article	IF	Citations
145	An Ultrastable and Easily Regenerated Hydrogenâ€Bonded Organic Molecular Framework with Permanent Porosity. Angewandte Chemie, 2017, 129, 2133-2136.	1.6	66
146	Temperature-Dependent in Situ Reduction of 4,4′-Azobispyridine via Solvothermal Reaction. Crystal Growth and Design, 2012, 12, 2079-2088.	1.4	65
147	Flexible Zirconium MOFs as Bromineâ€Nanocontainers for Bromination Reactions under Ambient Conditions. Angewandte Chemie - International Edition, 2017, 56, 14622-14626.	7.2	65
148	Two Novel Inorganic-Organic Hybrid Frameworks Based on InIII-BTC and InIII-BTEC. European Journal of Inorganic Chemistry, 2005, 2005, 77-81.	1.0	63
149	De Novo Tailoring Pore Morphologies and Sizes for Different Substrates in a Urea-Containing MOFs Catalytic Platform. Chemistry of Materials, 2016, 28, 2000-2010.	3.2	63
150	Ratiometric fluorescence detection of trace water in an organic solvent based on bimetallic lanthanide metal–organic frameworks. Chemical Communications, 2019, 55, 6926-6929.	2.2	63
151	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
152	Cd(II)-sulfonyldibenzoilate coordination polymers based on mono-, bi-, tri- and tetranuclear cores as nodes. CrystEngComm, 2008, 10, 905.	1.3	61
153	A Series of Octanuclear-Nickel(II) Complexes Supported by Thiacalix[4]arenes. Inorganic Chemistry, 2012, 51, 3283-3288.	1.9	61
154	Highly porous metal–organic framework sustained with 12-connected nanoscopic octahedra. Dalton Transactions, 2013, 42, 1708-1714.	1.6	61
155	Robust Molecular Bowl-Based Metal–Organic Frameworks with Open Metal Sites: Size Modulation To Increase the Catalytic Activity. Inorganic Chemistry, 2015, 54, 3719-3721.	1.9	61
156	Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO2 nanoparticles; comprehensive adsorption studies. International Journal of Biological Macromolecules, 2020, 162, 150-162.	3.6	61
157	Experimental strategies on enhancing toxic gases uptake of metal–organic frameworks. Coordination Chemistry Reviews, 2021, 430, 213738.	9.5	61
158	Stepwise adsorption in a mesoporous metal–organic framework: experimental and computational analysis. Chemical Communications, 2012, 48, 3297.	2.2	60
159	Visualizing the Dynamics of Temperature―and Solventâ€Responsive Soft Crystals. Angewandte Chemie - International Edition, 2016, 55, 7478-7482.	7.2	59
160	Microenvironments Enabled by Covalent Organic Framework Linkages for Modulating Active Metal Species in Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2022, 32, .	7.8	59
161	Transformation of Covalent Organic Frameworks from <i>N</i> ê€Acylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	59
162	The Role of Spacers between Carboxylate Groups in Self-Assembly Process: Syntheses and Characterizations of Two Novel Cadmium(II) Complexes Derived from Mixed Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 37-43.	1.0	57

#	Article	IF	CITATIONS
163	The use of phosphonates for constructing 3d–4f clusters at high oxidation states: synthesis and characterization of two unusual heterometallic CeMn complexes. Dalton Transactions, 2010, 39, 7276.	1.6	57
164	Interconvertible vanadium-seamed hexameric pyrogallol[4]arene nanocapsules. Nature Communications, 2018, 9, 4941.	5.8	57
165	Direct Solarâ€toâ€Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angewandte Chemie, 2018, 130, 12898-12902.	1.6	56
166	Coexistence of cages and one-dimensional channels in a porous MOF with high H2 and CH4 uptakes. Chemical Communications, 2014, 50, 2834.	2.2	55
167	pH-value-controlled assembly of photoluminescent zinc coordination polymers. Inorganica Chimica Acta, 2005, 358, 3057-3064.	1.2	54
168	A Series of Cadmium(II) Coordination Polymers Synthesized at different pH Values. European Journal of Inorganic Chemistry, 2007, 2007, 742-748.	1.0	54
169	Acid-triggered interlayer sliding of two-dimensional copper(<scp>i</scp>)–organic frameworks: more metal sites for catalysis. Chemical Science, 2021, 12, 6280-6286.	3.7	53
170	Design of metal-organic NLO materials: complexes derived from pyridine-3,4-dicarboxylate. New Journal of Chemistry, 2004, 28, 1590.	1.4	52
171	Rational design of a flu -type heterometallic cluster-based Zr-MOF. Chemical Communications, 2016, 52, 13671-13674.	2.2	52
172	Heterometallic thiacalix[4]arene-supported Na2Nill12Lnlll2 clusters with vertex-fused tricubane cores (Ln = Dy and Tb). Chemical Communications, 2012, 48, 7456.	2.2	51
173	Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal–Organic Framework via a "Click― Reaction. Inorganic Chemistry, 2015, 54, 5139-5141.	1.9	51
174	The unusual thermochromic NIR luminescence of Cu(i) clusters: tuned by Cu–Cu interactions and packing modes. Dalton Transactions, 2012, 41, 9411.	1.6	50
175	A porous metal–organic framework with helical chain building units exhibiting facile transition from micro- to meso-porosity. Chemical Communications, 2012, 48, 883-885.	2.2	50
176	Controlled Orthogonal Selfâ€Assembly of Heterometalâ€Decorated Coordination Cages. Chemistry - A European Journal, 2016, 22, 17345-17350.	1.7	49
177	The Combination of Charge and Energy Transfer Processes in MOFs for Efficient Photocatalytic Oxidative Coupling of Amines. Inorganic Chemistry, 2020, 59, 3297-3303.	1.9	49
178	Construction of Two Microporous Metal–Organic Frameworks with flu and pyr Topologies Based on Zn ₄ (μ ₃ -OH) ₂ (CO ₂) ₆ and Zn ₆ (μ ₆ -O)(CO ₂) ₆ Secondary Building Units. Inorganic Chemistry, 2014, 53, 1032-1038.	1.9	48
179	Zirconium Metal–Organic Cages: Synthesis and Applications. Accounts of Chemical Research, 2022, 55, 1546-1560.	7.6	48
180	Syntheses, crystal structures, and properties of complexes constructed with polybenzoate and 2,2′-bibenzimidazole. CrystEngComm, 2006, 8, 281.	1.3	47

#	Article	IF	Citations
181	A Water and Thermally Stable Metal–Organic Framework Featuring Selective CO ₂ Adsorption. Crystal Growth and Design, 2013, 13, 4125-4130.	1.4	47
182	Metal-Directed Self-Assembly: Two New Metal-Binicotinate Grid Polymeric Networks and Their Fluorescence Emission Tuned by Ligand Configuration. European Journal of Inorganic Chemistry, 2004, 2004, 2695-2700.	1.0	45
183	Three-Dimensional Frameworks Based on Dodecanuclear Dy–hydroxo Wheel Cluster with Slow Relaxation of Magnetization. Inorganic Chemistry, 2014, 53, 12234-12236.	1.9	45
184	A Three-Dimensional Porous Metalâ^'Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features. Inorganic Chemistry, 2009, 48, 4616-4618.	1.9	44
185	Visualizing the Dynamics of Temperature―and Solventâ€Responsive Soft Crystals. Angewandte Chemie, 2016, 128, 7604-7608.	1.6	44
186	Mono- and Bilayered Lead(II)-bpno Polymers with Unusual Low Energy Emission Properties (bpno =) Tj ETQq0 0 (O rgBJ /O\	verlągk 10 Tf 5
187	Bilayer structure of tetrasodium thiacalix[4] arene tetrasulfonate. Journal of Molecular Structure, 2002, 616, 241-246.	1.8	42
188	Synthesis and Characterization of a Family of Penta- and Tetra-Manganese (III) Complexes Derived from an Assembly System Containing <i>tert</i> -Butylphosphonic Acid. Inorganic Chemistry, 2008, 47, 5580-5590.	1.9	42
189	Costâ€Effective Synthesis of Amineâ€Tethered Porous Materials for Carbon Capture. ChemSusChem, 2015, 8, 433-438.	3.6	42
190	A fluorescent chemosensor for the sequential detection of copper(II) and histidine and its biological applications. Sensors and Actuators B: Chemical, 2016, 228, 387-394.	4.0	42
191	A novel MOF with mesoporous cages for kinetic trapping of hydrogen. Chemical Communications, 2012, 48, 254-256.	2.2	41
192	Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angewandte Chemie - International Edition, 2021, 60, 3087-3094.	7.2	41
193	A controllable and dynamic assembly system based on discrete metallocages. Chemical Science, 2014, 5, 483-488.	3.7	40
194	A porous metalâ€"organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane. Journal of Materials Chemistry A, 2014, 2, 11516.	5.2	40
195	Functional Hydrogen-Bonded Supramolecular Framework for K ⁺ Ion Sensing. Crystal Growth and Design, 2015, 15, 531-533.	1.4	40
196	A Novel 3-D Self-Penetrating Topological Network Assembled by Mixed Bridging Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 2228-2231.	1.0	39
197	Syntheses and Characterizations of Coordination Polymers Constructed from 4-Pyridylacetic Acid. Crystal Growth and Design, 2004, 4, 255-261.	1.4	39
198	Introduction of cavities up to 4 nm into a hierarchically-assembled metal–organic framework using an angular, tetratopic ligand. Chemical Communications, 2010, 46, 5223.	2.2	39

#	Article	IF	CITATIONS
199	Chiral Metallocycles Templated Novel Chiral Water Frameworks. Crystal Growth and Design, 2013, 13, 518-525.	1.4	39
200	Pore Size Reduction in Zirconium Metal–Organic Frameworks for Ethylene/Ethane Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7118-7126.	3.2	39
201	Synthesis and Crystal Structures of Four Cyanide-Bridged Coordination Polymers. European Journal of Inorganic Chemistry, 2005, 2005, 2181-2188.	1.0	38
202	Syntheses, Structures, and Characterization of Two Manganese(II)-Aminobenzoic Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1649-1656.	1.0	38
203	Achieving a Rare Breathing Behavior in a Polycatenated 2 D to 3 D Net through a Pillarâ€Ligand Extension Strategy. Chemistry - A European Journal, 2014, 20, 649-652.	¹ 1.7	38
204	Open Pentameric Calixarene Nanocage. Inorganic Chemistry, 2014, 53, 18-20.	1.9	38
205	A monomeric bowl-like pyrogallol[4]arene Ti ₁₂ coordination complex. Chemical Communications, 2017, 53, 9598-9601.	2.2	38
206	Ultrahighâ€Uptake Capacityâ€Enabled Gas Separation and Fruit Preservation by a New Singleâ€Walled Nickel–Organic Framework. Advanced Science, 2021, 8, 2003141.	5.6	38
207	Tunable Cage-Based Three-Dimensional Covalent Organic Frameworks. CCS Chemistry, 2022, 4, 3095-3105.	4.6	38
208	Synthesis, structure and luminescent properties of lanthanide–organic frameworks based on pyridine-2,6-dicarboxylic acid. Journal of Molecular Structure, 2008, 872, 99-104.	1.8	37
209	Photo-assisted charge/discharge Li-organic battery with a charge-separated and redox-active C ₆₀ @porous organic cage cathode. Energy and Environmental Science, 2022, 15, 780-785.	15.6	37
210	Self-Assembly of 1D to 3D Cadmium Complexes: Structural Characterization and Properties. European Journal of Inorganic Chemistry, 2005, 2005, 3156-3166.	1.0	36
211	Guest-Induced Molecular Capsule Assembly of p-Sulfonatothiacalix[4]arene. Crystal Growth and Design, 2006, 6, 514-518.	1.4	36
212	The Aggregations and Strong Emissions of d ⁸ and d ¹⁰ Metalâ^8-Hydroxyquinaldine Complexes. Crystal Growth and Design, 2008, 8, 2721-2728.	1.4	36
213	Synthesis, structures, and magnetic properties of a series of new heterometallic hexanuclear Co ₂ Ln ₄ (Ln = Eu, Gd, Tb and Dy) clusters. Inorganic Chemistry Frontiers, 2014, 1, 695-704.	3.0	36
214	Bottomâ€Up Construction of Mesoporous Nanotubes from 78â€Component Selfâ€Assembled Nanobarrels. Angewandte Chemie - International Edition, 2015, 54, 9844-9848.	7.2	36
215	The dynamic response of a flexible indium based metal–organic framework to gas sorption. Chemical Communications, 2016, 52, 2277-2280.	2.2	36
216	Dynamic Formation of Coordination Polymers versus Tetragonal Prisms and Unexpected Magnetic Superexchange Coupling Mediated by Encapsulated Anions in the Cobalt(II) 1,3-Bis(pyrid-4-ylthio)propan-2-one Series. Inorganic Chemistry, 2005, 44, 9175-9184.	1.9	35

#	Article	IF	CITATIONS
217	A series of goblet-like heterometallic pentanuclear [LnIIICuII4] clusters featuring ferromagnetic coupling and single-molecule magnet behavior. Chemical Communications, 2012, 48, 10736.	2.2	35
218	Use of aligned triphenylamine-based radicals in a porous framework for promoting photocatalysis. Applied Catalysis B: Environmental, 2018, 221, 664-669.	10.8	35
219	Synthesis and Characterization of a 3D H-Bonded Supramolecular Complex with Chiral Channels Encapsulating 1D Left-Handed Helical Water Chains. European Journal of Inorganic Chemistry, 2005, 2005, 3214-3216.	1.0	34
220	Sorption behaviour in a unique 3,12-connected zinc–organic framework with 2.4 nm cages. Journal of Materials Chemistry A, 2013, 1, 10631.	5.2	34
221	Co-intercalation of multiple active units into graphene by pyrolysis of hydrogen-bonded precursors for zinc–air batteries and water splitting. Journal of Materials Chemistry A, 2017, 5, 20882-20891.	5.2	34
222	From Helical Array to Porous Architecture:  Exploring the Use of Side Chains of Amino Acids to Engineer 1D Infinite Coordination Polymeric Chain into Porous Frameworks. Crystal Growth and Design, 2006, 6, 989-993.	1.4	33
223	Reductive cleavage of C bonds as a new strategy for turn-on dual fluorescence in effective sensing of H ₂ S. Chemical Science, 2018, 9, 8369-8374.	3.7	33
224	A two-dimensional copper(II) coordination polymer comprising discrete left- and right-handed helical chains. Journal of Molecular Structure, 2004, 694, 79-83.	1.8	32
225	Anion-driven self-assembly: from discrete cages to infinite polycatenanes step by step. Chemical Communications, 2013, 49, 719-721.	2.2	32
226	A dual-functional Cd(<scp>ii</scp>)–organic-framework demonstrating selective sensing of Zn ²⁺ and Fe ³⁺ ions exclusively and size-selective catalysis towards cyanosilylation. RSC Advances, 2015, 5, 10119-10124.	1.7	32
227	A new metal–organic framework constructed from cationic nodes and cationic linkers for highly efficient anion exchange. Chemical Communications, 2018, 54, 2998-3001.	2.2	32
228	Highly effective H2/D2 separation in a stable Cu-based metal-organic framework. Nano Research, 2021, 14, 518-525.	5.8	32
229	Hexagonal prismatic dodecameric water cluster: a building unit of the five-fold interpenetrating six-connected supramolecular network. Chemical Communications, 2012, 48, 9014.	2.2	31
230	Unusual pore structure and sorption behaviour in a hexanodal zinc–organic framework material. Chemical Communications, 2014, 50, 1678-1681.	2.2	31
231	Enhancing toxic gas uptake performance of Zr-based MOF through uncoordinated carboxylate and copper insertion; ammonia adsorption. Journal of Hazardous Materials, 2021, 416, 125933.	6.5	31
232	A novel 3D structure of Ag-1,4-cyclohexanedicarboxylate coordination framework. Inorganic Chemistry Communication, 2003, 6, 1426-1428.	1.8	30
233	A three-dimensional zinc(II) complex consisting of single metal centers and pentanuclear clusters bridged by 1,3,5-benzenetricarboxylate. Journal of Molecular Structure, 2004, 694, 205-210.	1.8	30
234	Butterfly-like enantiomerically homochiral {Co ^{II} ₄ } clusters exhibiting both slow magnetic relaxation and ferroelectric property. Dalton Transactions, 2014, 43, 3238-3243.	1.6	30

#	Article	IF	Citations
235	Solvent-Assisted, Thermally Triggered Structural Transformation in Flexible Mesoporous Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 8787-8793.	3.2	30
236	Robust Cationic Calix[4]arene Polymer as an Efficient Catalyst for Cycloaddition of Epoxides with CO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 7247-7254.	1.8	30
237	Solvatomorphism Influence of Porous Organic Cage on C ₂ H ₂ /CO ₂ Separation. ACS Applied Materials & Amp; Interfaces, 2021, 13, 24042-24050.	4.0	30
238	Syntheses, crystal structures and photoluminescence of two Cd(II) coordination polymers derived from a flexible bipyridyl ligand. Journal of Molecular Structure, 2004, 705, 29-34.	1.8	29
239	Three new cubane-like transition metal complexes of di-2-pyridyl ketone in gem-diol form: Syntheses, crystal structures and properties. Polyhedron, 2006, 25, 1618-1624.	1.0	29
240	Increase in pore size and gas uptake capacity in indium-organic framework materials. Journal of Materials Chemistry A, 2013, 1, 9075.	5.2	29
241	Improving ammonia uptake performance of zirconium-based metal-organic frameworks through open metal site insertion strategy. Chemical Engineering Journal, 2021, 421, 129655.	6.6	29
242	Four novel porous frameworks constructed by formate ligand. Microporous and Mesoporous Materials, 2006, 91, 215-220.	2.2	28
243	A blue luminescent inorganic–organic hybrid with infinite [Cd3(μ3-OH)2(μ2-Cl)2] connectivity. Inorganic Chemistry Communication, 2007, 10, 993-996.	1.8	28
244	Intricate 3D lanthanide–organic frameworks with mixed nodes nets. Journal of Solid State Chemistry, 2009, 182, 215-222.	1.4	28
245	Engineering a Zirconium MOF through Tandem "Click―Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface. Inorganic Chemistry, 2018, 57, 2288-2295.	1.9	28
246	Hydrogen-Bonded Framework Isomers Based on Zr-Metal Organic Cage: Connectivity, Stability, and Porosity. Crystal Growth and Design, 2020, 20, 4127-4134.	1.4	28
247	A high-efficiency dye-sensitized Pt(II) decorated metal-organic cage for visible-light-driven hydrogen production. Applied Catalysis B: Environmental, 2021, 285, 119782.	10.8	28
248	Novel three-dimensional network of lanthanum(III) complex {[La2(BTA)6(4,4′-bpdo)1.5]·1.5H2O}n (BTA=benzoyltrifluoroacetone; 4,4′-bpdo=4,4′-bipyridine dioxide). Journal of Molecular Structure, 2003, 646, 89-94.	1.8	27
249	High surface area porous polymer frameworks: Potential host material for lithium–sulfur batteries. Journal of Alloys and Compounds, 2016, 657, 626-630.	2.8	27
250	Tetrahedral crosslinking of dia-type nets into a zeolitic GIS-type framework for optimizing stability and gas sorption. Journal of Materials Chemistry A, 2017, 5, 23276-23282.	5.2	27
251	Boosting photocatalytic cross-dehydrogenative coupling reaction by incorporating [Rull(bpy)3] into a radical metal-organic framework. Applied Catalysis B: Environmental, 2018, 227, 425-432.	10.8	27
252	Incorporation of iron hydrogenase active sites into a stable photosensitizing metal-organic framework for enhanced hydrogen production. Applied Catalysis B: Environmental, 2019, 258, 117979.	10.8	27

#	Article	IF	Citations
253	Use of breakthrough experiment to evaluate the performance of hydrogen isotope separation for metal-organic frameworks M-MOF-74 (M=Co, Ni, Mg, Zn). Science China Chemistry, 2020, 63, 881-889.	4.2	27
254	Atmosphere-Pressure Methane Oxidation to Methyl Trifluoroacetate Enabled by a Porous Organic Polymer-Supported Single-Site Palladium Catalyst. ACS Catalysis, 2021, 11, 1008-1013.	5.5	27
255	Blue-greenish photoluminescent Gd(III) complexes with flexible succinate ligand. Journal of Molecular Structure, 2005, 743, 21-27.	1.8	26
256	The 3D porous metal–organic frameworks based on bis(pyrazinyl)–trizole: structures, photoluminescence and gas adsorption properties. CrystEngComm, 2013, 15, 5673.	1.3	26
257	An Unprecedented Pillarâ€Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angewandte Chemie, 2021, 133, 7625-7630.	1.6	26
258	Oxidation-State and Coordination-Site Specificity Influencing Dimensional Extension and Properties of Two Iron Complexes with Similar Helical Chains. European Journal of Inorganic Chemistry, 2004, 2004, 4457-4462.	1.0	25
259	Facile syntheses of ionic polymers for efficient catalytic conversion of CO2 to cyclic carbonates. Journal of CO2 Utilization, 2020, 42, 101301.	3.3	25
260	Stabilizing the Extrinsic Porosity in Metal–Organic Cages-Based Supramolecular Framework by In Situ Catalytic Polymerization. CCS Chemistry, 2021, 3, 1382-1390.	4.6	25
261	Characterization of a novel water tape containing (H2O)18 clusters. Inorganic Chemistry Communication, 2006, 9, 691-694.	1.8	24
262	Indium(iii)-2,5-pyridine dicarboxylate complexes with mononuclear, 1D chain, 2D layer and 3D chiral frameworks. CrystEngComm, 2009, 11, 918.	1.3	24
263	Two unique self-penetrating metal–organic frameworks based on flexible tripodal ligands, Cu(ii) and N-containing bridging ligands. CrystEngComm, 2011, 13, 6945.	1.3	24
264	Syntheses, Structures, and Magnetic Properties of a Family of Tetra-, Hexa-, and Nonanuclear Mn/Ni Heterometallic Clusters. Inorganic Chemistry, 2011, 50, 10342-10352.	1.9	24
265	Effect of Conformation and Combination of 1,3-Bis(4-pyridylthio)propan-2-one upon Coordination Architectures: Syntheses, Characterizations and Properties. European Journal of Inorganic Chemistry, 2005, 2005, 1303-1311.	1.0	23
266	Hydrothermal Synthesis, Crystal Structures, and Properties of a Class of 2D Coordination Polymers. European Journal of Inorganic Chemistry, 2005, 2005, 4598-4606.	1.0	23
267	Influence of indomethacin-loading on the micellization and drug release of thermosensitive dextran-graft-poly(N-isopropylacrylamide). Reactive and Functional Polymers, 2011, 71, 820-827.	2.0	23
268	Self-assembly and characterization of copper 3,4-pyridinedicarboxylate complexes based on a variety of polynuclear hydroxo clusters. Dalton Transactions, 2011, 40, 1758.	1.6	23
269	Cageâ€Like Porous Materials with Simultaneous High C 2 H 2 Storage and Excellent C 2 H 2 /CO 2 Separation Performance. Angewandte Chemie, 2021, 133, 10923-10927.	1.6	23
270	Hierarchical assembly of a novel luminescent silver coordination framework with 4-(4-pyridylthiomethyl)benzoic acid. Journal of Molecular Structure, 2005, 737, 55-59.	1.8	22

#	Article	IF	Citations
271	Two homochiral 3D supramolecular architectures assembled from 4,4′-bipyridine-bridged copper(II)-amino acid helical chains. Inorganic Chemistry Communication, 2005, 8, 971-974.	1.8	22
272	A Novel Two-Dimensional Layer Structure Built from a Tetracobalt(II)-p-sulfonatothiacalix[4]arene Cluster Unit. European Journal of Inorganic Chemistry, 2005, 2005, 1182-1187.	1.0	22
273	3-D indium(III)-btc channel frameworks and their ion-exchange properties (btc=1,3,5-benzenetricarboxylate). Journal of Solid State Chemistry, 2006, 179, 1154-1160.	1.4	22
274	Synthesis and characterization of a family of tetranuclear manganese(iii) phosphonate complexes. New Journal of Chemistry, 2007, 31, 2103.	1.4	22
275	Chains, ladders and sheets of d10 metal–organic polymers generated from the flexible bipyridyl ligands. Polyhedron, 2007, 26, 5309-5316.	1.0	22
276	Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties. Nature Communications, 2020, 11, 5806.	5.8	22
277	Water-stable hydrazone-linked porous organic cages. Chemical Science, 2021, 12, 13307-13315.	3.7	22
278	Ideal N-doped carbon nanoarchitectures evolved from fibrils for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 19765-19770.	5.2	21
279	Introduction of Flexibility into a Metal–Organic Framework to Promote Hg(II) Capture through Adaptive Deformation. Inorganic Chemistry, 2020, 59, 18264-18275.	1.9	21
280	Two photoluminescent coordination polymers based on naphthalene-1,4,5,8-tetracarboxylic acid 4,5-anhydride. Inorganic Chemistry Communication, 2005, 8, 651-655.	1.8	20
281	An unusual four-connected (65,8) topology in a coordination polymer. Inorganic Chemistry Communication, 2006, 9, 551-554.	1.8	20
282	Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework. Science China Chemistry, 2013, 56, 418-422.	4.2	20
283	Wings waving: coordinating solvent-induced structural diversity of new Cu(ii) flexible MOFs with crystal to crystal transformation and gas sorption capability. CrystEngComm, 2013, 15, 9513.	1.3	20
284	Elucidating the Structure–Reactivity Correlations of Phenothiazineâ€Based Fluorescent Probes toward ClO ^{â^²} . Chemistry - A European Journal, 2018, 24, 8157-8166.	1.7	20
285	From chain to layer structure: Cdll coordination polymers derived from diphenic acid. Journal of Molecular Structure, 2006, 784, 1-6.	1.8	19
286	Syntheses, structures and properties of three novel coordination polymers with a flexible asymmetrical bridging ligand. Inorganica Chimica Acta, 2006, 359, 2232-2240.	1.2	19
287	Formation of a sandwich-type supercomplex through second-sphere coordination of functionalized macrocyclic polyamines. CrystEngComm, 2008, 10, 19-22.	1.3	19
288	A Porous Framework as a Variable Chemosensor: From the Response of a Specific Carcinogenic Alkylâ€Aromatic to Selective Detection of Explosive Nitroaromatics. Chemistry - A European Journal, 2018, 24, 11033-11041.	1.7	19

#	Article	IF	CITATIONS
289	Blue luminescent complexes based on 5-aminodiacetic isophthalic ligand. Journal of Molecular Structure, 2006, 789, 220-224.	1.8	18
290	Captures of Copper(II)â^'2,2â€~-bpy Complexes in Conformation-Fixed Homometallic Anionic Dimers and Heterometallic Clusters. Crystal Growth and Design, 2007, 7, 1446-1451.	1.4	18
291	In situ synthesis of Ag nanoparticles in aminocalix[4]arene multilayers. Journal of Colloid and Interface Science, 2010, 341, 320-325.	5.0	18
292	Two cationic metal–organic frameworks featuring different cage-to-cage connections: syntheses, crystal structures, photoluminescence and gas sorption properties. CrystEngComm, 2013, 15, 8139.	1.3	18
293	Controllable Reassembly of a Dynamic Metallocage: From Thermodynamic Control to Kinetic Control. Chemistry - A European Journal, 2017, 23, 456-461.	1.7	18
294	A novel antiferromagnetic nickel coordination framework with 1-H-benzimidazole-5-carboxylic acid. Journal of Molecular Structure, 2006, 782, 106-109.	1.8	17
295	Syntheses, structures and magnetic properties of Co(II) complexes based on H4BTEC and 2-(n-pyridyl)benzimidazole (n=2, 3, and 4). Journal of Molecular Structure, 2007, 831, 195-202.	1.8	17
296	Self-Assembly of Polyhedral Indium–Organic Nanocages. Inorganic Chemistry, 2014, 53, 12228-12230.	1.9	17
297	Dynamic metal–organic frameworks for the separation of hydrogen isotopes. Dalton Transactions, 2020, 49, 16617-16622.	1.6	17
298	Coordination-based molecular nanomaterials for biomedically relevant applications. Coordination Chemistry Reviews, 2021, 438, 213752.	9.5	17
299	Syntheses and structural characterization of trivalent lanthanide complexes of p-sulfonatothiacalix[4] arene. Journal of Molecular Structure, 2004, 690, 63-68.	1.8	16
300	Syntheses, crystal structures and photoluminescences of two (4,4) topological coordination networks derived from the flexible bipyridyl ligands. Inorganica Chimica Acta, 2007, 360, 2207-2214.	1.2	16
301	SO ₄ ^{2â^'} anion directed hexagonal-prismatic cages via cooperative C–Hâ< ⁻ O hydrogen bonds. Chemical Science, 2014, 5, 4163-4166.	3.7	16
302	Reversible photoreduction of Cu(<scp>ii</scp>)–coumarin metal–organic polyhedra. Chemical Communications, 2017, 53, 9250-9253.	2.2	16
303	3D metal-organic frameworks based on lanthanide-seamed dimeric pyrogallol[4]arene nanocapsules. Science China Chemistry, 2018, 61, 664-669.	4.2	16
304	A Record-Breaking Loading Capacity for Single-Molecule Magnet Mn ₁₂ Clusters Achieved in a Mesoporous Ln-MOF. ACS Applied Electronic Materials, 2019, 1, 804-809.	2.0	16
305	Acid–Base-Resistant Metal–Organic Framework for Size-Selective Carbon Dioxide Capture. Inorganic Chemistry, 2020, 59, 13542-13550.	1.9	16
306	Electricâ€Field Assisted Inâ€Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angewandte Chemie, 2020, 132, 13201-13208.	1.6	16

#	Article	IF	Citations
307	Chiral proline-substituted porous organic cages in asymmetric organocatalysis. Chemical Science, 2022, 13, 3582-3588.	3.7	16
308	Nickel-Organic Coordination Layers with Different Directional Cavities. European Journal of Inorganic Chemistry, 2006, 2006, 4852-4856.	1.0	15
309	Conformation driven in situ interlock: from discrete metallocycles to infinite polycatenanes. Chemical Communications, 2015, 51, 13706-13709.	2.2	15
310	Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angewandte Chemie, 2021, 133, 3124-3131.	1.6	15
311	A window-space-directed assembly strategy for the construction of supertetrahedron-based zeolitic mesoporous metal–organic frameworks with ultramicroporous apertures for selective gas adsorption. Chemical Science, 2021, 12, 5767-5773.	3.7	15
312	A [Th ₈ Co ₈] Nanocage-Based Metal–Organic Framework with Extremely Narrow Window but Flexible Nature Enabling Dual-Sieving Effect for Both Isotope and Isomer Separation. CCS Chemistry, 2022, 4, 1016-1027.	4.6	15
313	A chiral supramolecular architecture [Cu2(4,4′-bipyridine)2 (sala)2]n·4.5nH2O(sala=N-(2-hydroxybenzyl)-l-alanine anion). Journal of Molecular Structure, 2004, 707, 231-234.	1.8	14
314	Luminescent 2D supramolecular network constructed from tubular coordination polymer based on H-bonding and π–π interactions. Journal of Molecular Structure, 2006, 789, 128-132.	1.8	14
315	Self-assembly of high-nuclearity lanthanide-based nanoclusters for potential bioimaging applications. Nanoscale, 2016, 8, 11123-11129.	2.8	14
316	Twisted molecule-based hyper-crosslinked porous polymers for rapid and efficient removal of organic micropollutants from water. RSC Advances, 2018, 8, 36812-36818.	1.7	14
317	Optimizing H ₂ , D ₂ , and C ₂ H ₂ Sorption Properties by Tuning the Pore Apertures in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13312-13317.	1.9	14
318	The synthesis and applications of chiral pyrrolidine functionalized metal–organic frameworks and covalent-organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 1319-1333.	3.0	14
319	Metal–organic tube or layered assembly: reversible sheet-to-tube transformation and adaptive recognition. Chemical Science, 2020, 11, 9818-9826.	3.7	14
320	A self-assembled molecular ladder with Cu(H2O)4 units as cross rungs. Inorganic Chemistry Communication, 2005, 8, 539-542.	1.8	13
321	A novel chiral framework constructed through three-fold interpenetration of (4,4) nets of Ni(II)–muconate–4,4′-bipyridine. Inorganic Chemistry Communication, 2006, 9, 371-374.	1.8	13
322	Multilayer films of single-component and charged tetraaminocalix[4] arenes based on hydrogen bonding. Chemical Communications, 2007, , 1813.	2.2	13
323	Syntheses, crystal structures and magnetic properties of Ni(II)–2,4-pyridine-dicarboxylates. Journal of Molecular Structure, 2007, 830, 85-93.	1.8	13
324	Unprecedented ferromagnetic interaction in an erbium(III)–copper(II) coordination polymer. Journal of Molecular Structure, 2008, 885, 23-27.	1.8	13

#	Article	IF	Citations
325	Flexible Zirconium MOFs as Bromineâ€Nanocontainers for Bromination Reactions under Ambient Conditions. Angewandte Chemie, 2017, 129, 14814-14818.	1.6	13
326	Chiral induction in a pcu -derived network from achiral precursors. Chemical Communications, 2019, 55, 4611-4614.	2.2	13
327	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie, 0, , .	1.6	13
328	Two Zirconium Metal–Organic Cages with <i>S</i> ₄ and <i>D</i> _{2d} Symmetry: Construction and Detection of Antibiotics. Crystal Growth and Design, 2022, 22, 2768-2773.	1.4	13
329	[Cu(dca)2(en)]n: a two-dimensional copper(II) coordination polymer with both $\hat{l}\frac{1}{4}$ 1,5-dca and pseudo- $\hat{l}\frac{1}{4}$ 1,3-dca bridges. Journal of Molecular Structure, 2003, 658, 223-228.	1.8	12
330	A luminescent polymeric silver(I) coordination tubular helicate. Inorganic Chemistry Communication, 2005, 8, 529-532.	1.8	12
331	Lanthanide-isophthalate cavity frameworks encapsulated copper(I) complexes. Journal of Molecular Structure, 2006, 796, 203-209.	1.8	12
332	Assembly of two novel three-dimensional networks driven by Alkali metals with an irreversible structural conversion. Polyhedron, 2007, 26, 2979-2986.	1.0	12
333	Hydrogen-Bonded Helical Array, Sodium-Ion-Mediated Head-to-Tail Chain, and Regular Ionic Bilayer: Structural Diversities of <i>p</i> -Sulfonatothiacalix[4]arene Tetranuclear Cluster Units. Crystal Growth and Design, 2009, 9, 1584-1589.	1.4	12
334	Sorption comparison of two indium–organic framework isomers with syn–anti configurations. CrystEngComm, 2014, 16, 7434.	1.3	12
335	Syntheses, structures, luminescence and magnetic properties of three high-nuclearity neodymium compounds based on mixed sulfonylcalix[4]arene-phosphonate ligands. CrystEngComm, 2016, 18, 4921-4928.	1.3	12
336	Cooperation of Three Chromophores Generates the Waterâ€Resistant Nitrate Nonlinear Optical Material Bi ₃ TeO ₆ OH(NO ₃) ₂ . Angewandte Chemie, 2017, 129, 555-559.	1.6	12
337	A tubular luminescent framework: precise decoding of nitroaniline isomers and quantitative detection of traces of benzaldehyde in benzyl alcohol. Journal of Materials Chemistry C, 2020, 8, 9828-9835.	2.7	12
338	The competitive and synergistic effect between adsorption enthalpy and capacity in D2/H2 separation of M2(m-dobdc) frameworks. Chinese Chemical Letters, 2021, 32, 3562-3565.	4.8	12
339	Anionic capsules of p-sulfonatothiacalix[4]arene with trivalent lanthanide ions and diaza-crown ether. Polyhedron, 2004, 23, 2055-2061.	1.0	11
340	Inclusion of Metal Complexes into Cavities of 2D Coordination Networks Built fromp-Sulfonatothiacalix[4]arene Tetranuclear Clusters. European Journal of Inorganic Chemistry, 2006, 2006, 526-530.	1.0	11
341	Chlorido-Bridged MnII Schiff-Base Complex with Ferromagnetic Exchange Interactions. European Journal of Inorganic Chemistry, 2007, 2007, 3663-3668.	1.0	11
342	High Gas Uptake and Selectivity in Hyperâ€Crosslinked Porous Polymers Knitted by Various Nitrogenâ€Containing Linkers. ChemistryOpen, 2017, 6, 554-561.	0.9	11

#	Article	IF	CITATIONS
343	A Reusable MOFâ€Supported Singleâ€Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of o â€Alkynylanilines. Angewandte Chemie, 2019, 131, 7769-7773.	1.6	11
344	Heterogeneous postassembly modification of zirconium metal–organic cages in supramolecular frameworks. Chemical Communications, 2021, 57, 6276-6279.	2.2	11
345	Molecule Cleft and Squares with Binicotinic Bishydrazone Ligand: Crystal Structures, Spectroscopic Properties, and Calculation. Crystal Growth and Design, 2008, 8, 3791-3802.	1.4	10
346	Structural diversity of lanthanide coordination polymers with 2,2′-biquinoline-4,4′-dicarboxylate. CrystEngComm, 2009, 11, 2640.	1.3	10
347	A 2D metal–organic framework composed of a bi-functional ligand with ultra-micropores for post-combustion CO ₂ capture. RSC Advances, 2015, 5, 47384-47389.	1.7	10
348	Control of random self-assembly of pyrogallol[4]arene-based nanocapsule or framework. Chinese Chemical Letters, 2020, 31, 2023-2026.	4.8	10
349	A Straightforward Strategy for Constructing Zirconium Metallocavitands. Crystal Growth and Design, 2021, 21, 692-697.	1.4	10
350	The effect of pore sizes on D ₂ /H ₂ separation conducted by MOF-74 analogues. Inorganic Chemistry Frontiers, 2022, 9, 1674-1680.	3.0	10
351	Two Coordination Networks Built from <i>p</i> à€€ulfonatothiacalix[4]arene Tetranuclear Clusters. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 1669-1672.	0.6	9
352	A glycine ligand coordinated hybrid complex constructed from hexanuclear copper clusters and octamolybdates. Inorganic Chemistry Communication, 2011, 14, 1546-1549.	1.8	9
353	Two metal–organic frameworks based on pyridyl–tricarboxylate ligands as size-selective catalysts for solvent-free cyanosilylation reaction. CrystEngComm, 2018, 20, 6070-6076.	1.3	9
354	Spiro[pyrrol-benzopyran]-based probe with high asymmetry for chiroptical sensing <i>via</i> circular dichroism. Chemical Communications, 2019, 55, 7438-7441.	2.2	9
355	Two supramolecular architectures constructed from dinuclear zinc(II) unit. Journal of Molecular Structure, 2004, 698, 87-91.	1.8	8
356	4,4′-Sulfonyldibenzoic acid. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2870-o2870.	0.2	8
357	Three-component reactions leading to 2D and 3D metal–organic frameworks assembled on dinickel-carboxylate secondary building units. Polyhedron, 2011, 30, 47-52.	1.0	8
358	Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation. Chemical Research in Chinese Universities, 2022, 38, 428-432.	1.3	8
359	Transformation of Covalent Organic Frameworks from $\langle i \rangle N \langle i \rangle \hat{a} \in A$ cylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	8
360	The chain structure ofcatena-poly[[(2,2′-bipyridine)cadmium(II)]-di-Î⅓-chloro]. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m821-m823.	0.2	7

#	Article	IF	CITATIONS
361	Synthesis and structural characterization of a binuclear zirconium complex of tetraanionic p-tert-butylthiacalix[4]arene bridged by methanol. Journal of Coordination Chemistry, 2004, 57, 1243-1249.	0.8	7
362	Poly[[aquaneodymium(III)]-ν5-citrato]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m108-m109.	0.2	7
363	A novel one-dimensional coordination polymer capturing hydrated Co(II) cations. Journal of Molecular Structure, 2008, 877, 132-137.	1.8	7
364	Extending the Structures of the <i>p</i> -Sulfonatothiacalix[4]arene Dimers Through Second-sphere Coordination and π…π Stacking Interactions. Supramolecular Chemistry, 2008, 20, 289-293.	1.5	7
365	Comparative Stability and Sorption Study of Two <i>the</i> -type Metal–Organic Frameworks with Different Multiplicate Metal–Ligand Interactions in Secondary Building Units. Crystal Growth and Design, 2017, 17, 418-422.	1.4	7
366	Unprecedented porosity transformation of hierarchically porous TiO2 derived from Ti-Oxo clusters. Microporous and Mesoporous Materials, 2020, 300, 110153.	2.2	7
367	Tuning the Structure of Fe-Tetracarboxylate Frameworks Through Linker-Symmetry Reduction. CCS Chemistry, 2021, 3, 1701-1709.	4.6	7
368	X-ray structural study of lanthanide complexes with a p-tert-butylthiacalix[4]arene bearing phosphoryl pendant arms. Journal of Molecular Structure, 2005, 752, 78-86.	1.8	6
369	A facile coordination-assisted method to fabricate a FRET-based fluorescent probe for ratiometric analysis with improved selectivity. Sensors and Actuators B: Chemical, 2017, 252, 159-164.	4.0	6
370	Pillar-Assisted Construction of a Three-Dimensional Framework from a Two-Dimensional Bilayer Based on a Zn/Cd Heterometal Cluster: Pore Tuning and Gas Adsorption. Crystal Growth and Design, 2018, 18, 1826-1833.	1.4	6
371	A Corroleâ€Based Covalent Organic Framework Featuring Desymmetrized Topology. Angewandte Chemie, 2020, 132, 4384-4389.	1.6	6
372	Bis [N-(4-hydroxybenzyl)-D,L-alaninato]copper(II) tetrahydrate. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m522-m523.	0.2	5
373	A dinuclear vanadium compound with 24-membered macrocycle generated via formation of S–C bonds. Inorganica Chimica Acta, 2009, 362, 407-413.	1.2	5
374	Syntheses, structures and photoluminescence of two microporous lanthanide coordination polymers. Inorganic Chemistry Communication, 2012, 22, 120-122.	1.8	5
375	A Novel Selfâ€Penetrated Framework with New Topology Based on Rigid Ligands. Chinese Journal of Chemistry, 2014, 32, 1029-1032.	2.6	5
376	Sequential Transformation of Zirconium(IV)â€MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers. Angewandte Chemie, 2018, 130, 12758-12763.	1.6	5
377	Diaquabis(4,4′-bipyridineN,N′-dioxide-κO)bis(dicyanamido)cadmium(II). Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m713-m714.	0.2	4
378	μ-4,4′-Bipyridine-bis[aqua(N-salicylideneaspartato)copper(II)]. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m1976-m1977.	0.2	4

#	Article	IF	Citations
379	Synthesis, crystal structure and magnetic property of a three-dimensional manganese(II) complex. Journal of Coordination Chemistry, 2006, 59, 969-976.	0.8	4
380	A p-Sulfonatothiacalix[4]arene Supramolecular Capsule Containing a Dinuclear Copper(II) Complex. Supramolecular Chemistry, 2007, 19, 411-417.	1.5	4
381	Bis(tetraethylammonium) bis(dimethylammonium) dihydrogendecavanadate(V). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m675-m677.	0.2	4
382	Preparations, structures and properties of heterobimetallic complexes based on tetrahydrofuran-2,3,4,5-tetracarboxylate. Journal of Solid State Chemistry, 2013, 201, 208-214.	1.4	4
383	Stabilization of Allylic Amine N-Oxide through Cocrystallization with Pyrogallol[4]arene. Crystal Growth and Design, 2017, 17, 5625-5628.	1.4	4
384	Efficient synthesis and facile functionalization of highly fluorescent spiro[pyrrol-pyran]. Dyes and Pigments, 2019, 171, 107777.	2.0	4
385	Pyrogallol[4]arene Coordination Nanocapsule Micelle as Bioinspired Water Reduction Catalyst. , 2021, 3, 1315-1320.		4
386	Aquabis(1,10-phenanthroline)(4,4′-sulfonyldibenzoato)nickel(II) dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m67-m69.	0.2	3
387	Synthesis, X-ray crystal structure, and magnetic property of a 3-D self-assembled supermolecule. Journal of Coordination Chemistry, 2009, 62, 2307-2315.	0.8	3
388	Conformation Improving Construction of Ag3L2 Metallocages and Their Selective Encapsulation. Crystal Growth and Design, 2016, 16, 3569-3572.	1.4	3
389	Hexaaquacobalt(II) bis(4-hydroxyisophthalate) tetrahydrate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m294-m296.	0.2	2
390	Diaqua(2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylato-κN3)(1,10-phenanthroline)zinc(II) dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m470-m472.	0.2	2
391	Naphthalene-1,4,5,8-tetracarboxylic 1,8-anhydride. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1294-o1296.	0.2	2
392	Tetraaquabis(4,6-dioxidopyrimidin-1-ium-κ3N)cobalt(II). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m832-m834.	0.2	2
393	METAL-ORGANIC FRAMEWORKS., 2011, , 37-64.		2
394	Syntheses, crystal structures, and properties of four coordination polymers with a new bifunctional ligand. Polyhedron, 2015, 87, 361-368.	1.0	2
395	Porous Materials to Store Clear EnergyÂGasesâ^—. , 2015, , 297-327.		2
396	Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chemical Science, 2022, 13, 9016-9022.	3.7	2

#	Article	IF	CITATIONS
397	5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis(2-cyanobenzyloxy)-2,8,14,20-tetrathiacalix[4]arene–dichlorom (1/2). Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o376-o377.	iethane 0.4	1
398	Inside Cover: Poly(polyoxotungstate)s with 20 Nickel Centers: From Nanoclusters to Oneâ€Dimensional Chains (Angew. Chem. Int. Ed. 39/2009). Angewandte Chemie - International Edition, 2009, 48, 7104-7104.	7.2	1
399	Porous Polymer Networks: Highly Stable Porous Polymer Networks with Exceptionally High Gasâ€Uptake Capacities (Adv. Mater. 32/2011). Advanced Materials, 2011, 23, 3608-3608.	11.1	1
400	Synthesis and Characterization of Two Isostructural Lanthanideâ€Containing Metalâ€Organic Frameworks Constructed from an Unprecedented [Ln ₇ (<i>μ</i> ₃ â€OH) ₈] ¹³⁺ Cluster. Chinese Journal of Chemistry, 2016, 34, 210-214.	2.6	1
401	A new double layered 2-D copper(II) coordination polymer based on a semi-rigid ligand. Journal of Coordination Chemistry, 2016, 69, 1828-1836.	0.8	1
402	Metal-organic frameworks and exemplified cytotoxicity evaluation. , 2020, , 347-381.		1
403	A Novel One-Dimensional Copper(II) Complex of a Carboxymethylated Tricyclic Azacrown Ether Derivative Linked by Hydrogen Bonding. Journal of Coordination Chemistry, 2003, 56, 433-439.	0.8	0
404	catena-Poly[[[triaqua(4,4′-bipyridineN,N′-dioxide-κO)dichloridocerium(III)]-ν2-4,4′-bipyridineN,N′-dioxide monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1430-m1430.	oxide-κ20: 0.2	:O′] 0
405	Innentitelbild: Poly(polyoxotungstate)s with 20 Nickel Centers: From Nanoclusters to One-Dimensional Chains (Angew. Chem. 39/2009). Angewandte Chemie, 2009, 121, 7238-7238.	1.6	O
406	A thermally stable pcu network based on ferromagnetic dinuclear Ni(II) units. Journal of Molecular Structure, 2014, 1058, 272-276.	1.8	0
407	Frontispiece: Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO ₂ Photoreduction with H ₂ O. Angewandte Chemie - International Edition, 2019, 58, .	7.2	O
408	Frontispiz: Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO ₂ Photoreduction with H ₂ O. Angewandte Chemie, 2019, 131, .	1.6	0
409	Structures and Catalytic Properties of two New Squaramideâ€decorated Cdâ€MOFs. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0