List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9396308/publications.pdf Version: 2024-02-01

		61687	90395
213	7,313	45	73
papers	citations	h-index	g-index
225	225	005	0701
225	225	225	9721
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced photocatalytic removal of NOx gases by β-Fe2O3/CuO and β-Fe2O3/WO3 nanoheterostructures. Chemical Engineering Journal, 2022, 430, 132757.	6.6	16
2	A versatile Fe(II) diketonate diamine adduct: Preparation, characterization and validation in the chemical vapor deposition of iron oxide nanomaterials. Materials Chemistry and Physics, 2022, 277, 125534.	2.0	7
3	Metal Oxide Nanosystems As Chemoresistive Gas Sensors for Chemical Warfare Agents: A Focused Review. Advanced Materials Interfaces, 2022, 9, .	1.9	14
4	Tailoring oxygen evolution performances of carbon nitride systems fabricated by electrophoresis through Ag and Au plasma functionalization. Chemical Engineering Journal, 2022, 448, 137645.	6.6	12
5	Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process. Applied Catalysis B: Environmental, 2021, 284, 119684.	10.8	73
6	Facile preparation of a cobalt diamine diketonate adduct as a potential vapor phase precursor for Co ₃ O ₄ films. Dalton Transactions, 2021, 50, 10374-10385.	1.6	9
7	The Early Steps of Molecule-to-Material Conversion in Chemical Vapor Deposition (CVD): A Case Study. Molecules, 2021, 26, 1988.	1.7	9
8	Plasmaâ€Assisted Synthesis of Co ₃ O ₄ â€Based Electrocatalysts on Ni Foam Substrates for the Oxygen Evolution Reaction. Advanced Materials Interfaces, 2021, 8, 2100763.	1.9	12
9	Analysis of Co3O4-SnO2 and Co3O4-Fe2O3 nanosystems by x-ray photoelectron spectroscopy. Surface Science Spectra, 2021, 28, 024002.	0.3	3
10	Plasmaâ€Assisted Synthesis of Co ₃ O ₄ â€Based Electrocatalysts on Ni Foam Substrates for the Oxygen Evolution Reaction (Adv. Mater. Interfaces 18/2021). Advanced Materials Interfaces, 2021, 8, 2170099.	1.9	0
11	Fe2O3-WO3 and Fe2O3-CuO nanoheterostructures by XPS. Surface Science Spectra, 2021, 28, .	0.3	2
12	Manganese Oxide Nanoarchitectures as Chemoresistive Gas Sensors to Monitor Fruit Ripening. Journal of Nanoscience and Nanotechnology, 2020, 20, 3025-3030.	0.9	15
13	Au–Manganese Oxide Nanostructures by a Plasmaâ€Assisted Process as Electrocatalysts for Oxygen Evolution: A Chemicoâ€Physical Investigation. Advanced Sustainable Systems, 2020, , 2000177.	2.7	5
14	Engineering Au/MnO ₂ hierarchical nanoarchitectures for ethanol electrochemical valorization. Journal of Materials Chemistry A, 2020, 8, 16902-16907.	5.2	18
15	Plasma-Assisted Chemical Vapor Deposition of F-Doped MnO2 Nanostructures on Single Crystal Substrates. Nanomaterials, 2020, 10, 1335.	1.9	5
16	XPS characterization of Mn2O3 nanomaterials functionalized with Ag and SnO2. Surface Science Spectra, 2020, 27, .	0.3	8
17	MnO2 nanomaterials functionalized with Ag and SnO2: An XPS study. Surface Science Spectra, 2020, 27, 024005.	0.3	6
18	Quasi-1D Mn ₂ O ₃ Nanostructures Functionalized with First-Row Transition-Metal Oxides as Oxygen Evolution Catalysts. ACS Applied Nano Materials, 2020, 3, 9889-9898.	2.4	12

#	Article	IF	CITATIONS
19	Dual Improvement of <i>β</i> â€MnO ₂ Oxygen Evolution Electrocatalysts via Combined Substrate Control and Surface Engineering. ChemCatChem, 2020, 12, 5984-5992.	1.8	5
20	Hydrogen Gas Sensing Performances of p-Type Mn3O4 Nanosystems: The Role of Built-in Mn3O4/Ag and Mn3O4/SnO2 Junctions. Nanomaterials, 2020, 10, 511.	1.9	14
21	Quasi-1D MnO2 nanocomposites as gas sensors for hazardous chemicals. Applied Surface Science, 2020, 512, 145667.	3.1	35
22	Nanoscale Mn ₃ O ₄ Thin Film Photoelectrodes Fabricated by a Vapor-Phase Route. ACS Applied Energy Materials, 2019, 2, 8294-8302.	2.5	6
23	Mn ₃ O ₄ Nanomaterials Functionalized with Fe ₂ O ₃ and ZnO: Fabrication, Characterization, and Ammonia Sensing Properties. Advanced Materials Interfaces, 2019, 6, 1901239.	1.9	12
24	Pt and Pt/Sn carbonyl clusters as precursors for the synthesis of supported metal catalysts for the base-free oxidation of HMF. Applied Catalysis A: General, 2019, 588, 117279.	2.2	34
25	Multi-functional MnO ₂ nanomaterials for photo-activated applications by a plasma-assisted fabrication route. Nanoscale, 2019, 11, 98-108.	2.8	30
26	Sensing Nitrogen Mustard Gas Simulant at the ppb Scale via Selective Dual-Site Activation at Au/Mn ₃ O ₄ Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 23692-23700.	4.0	26
27	Controlled Surface Modification of ZnO Nanostructures with Amorphous TiO ₂ for Photoelectrochemical Water Splitting. Advanced Sustainable Systems, 2019, 3, 1900046.	2.7	15
28	Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications. ACS Applied Materials & Interfaces, 2019, 11, 15881-15890.	4.0	7
29	Chemical Vapor Deposition: Mn ₃ O ₄ Nanomaterials Functionalized with Fe ₂ O ₃ and ZnO: Fabrication, Characterization, and Ammonia Sensing Properties (Adv. Mater. Interfaces 24/2019). Advanced Materials Interfaces, 2019, 6, 1970151.	1.9	0
30	Structure and properties of Mn3O4 thin films grown on single crystal substrates by chemical vapor deposition. Materials Chemistry and Physics, 2019, 223, 591-596.	2.0	16
31	Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips. Crystal Growth and Design, 2018, 18, 2579-2587.	1.4	10
32	Toward the Detection of Poisonous Chemicals and Warfare Agents by Functional Mn ₃ O ₄ Nanosystems. ACS Applied Materials & Interfaces, 2018, 10, 12305-12310.	4.0	28
33	Supported Mn ₃ O ₄ Nanosystems for Hydrogen Production through Ethanol Photoreforming. Langmuir, 2018, 34, 4568-4574.	1.6	13
34	WO ₃ -decorated ZnO nanostructures for light-activated applications. CrystEngComm, 2018, 20, 1282-1290.	1.3	28
35	Manganese(II) Molecular Sources for Plasma-Assisted CVD of Mn Oxides and Fluorides: From Precursors to Growth Process. Journal of Physical Chemistry C, 2018, 122, 1367-1375.	1.5	34
36	Controllable vapor phase fabrication of F:Mn ₃ O ₄ thin films functionalized with Ag and TiO ₂ . CrystEngComm, 2018, 20, 3016-3024.	1.3	15

#	Article	IF	CITATIONS
37	Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO ₂ Nanomaterials. Inorganic Chemistry, 2018, 57, 14564-14573.	1.9	9
38	ZnO-based nanocomposites prepared by a vapor phase route, investigated by XPS. Surface Science Spectra, 2018, 25, .	0.3	3
39	XPS investigation of F-doped MnO2 nanosystems fabricated by plasma assisted-CVD. Surface Science Spectra, 2018, 25, .	0.3	12
40	Plasmaâ€Assisted Growth of βâ€MnO ₂ Nanosystems as Gas Sensors for Safety and Food Industry Applications. Advanced Materials Interfaces, 2018, 5, 1800792.	1.9	28
41	Metal oxide electrodes for photo-activated water splitting. , 2018, , 19-48.		4
42	Tailoring Vapor-Phase Fabrication of Mn ₃ O ₄ Nanosystems: From Synthesis to Gas-Sensing Applications. ACS Applied Nano Materials, 2018, 1, 2962-2970.	2.4	26
43	Mn3O4 thin films functionalized with Ag, Au, and TiO2 analyzed using x-ray photoelectron spectroscopy. Surface Science Spectra, 2018, 25, 014003.	0.3	12
44	Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2017, 4, 1700161.	1.9	30
45	Molecular Engineering of Mn ^{II} Diamine Diketonate Precursors for the Vapor Deposition of Manganese Oxide Nanostructures. Chemistry - A European Journal, 2017, 23, 17954-17963.	1.7	33
46	On the use of Fe(dpm) ₃ as precursor for the thermal VD growth of <i>hematite</i> nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600779.	0.8	8
47	Hematite-based nanocomposites for light-activated applications: Synergistic role of TiO2 and Au introduction. Solar Energy Materials and Solar Cells, 2017, 159, 456-466.	3.0	30
48	XPS analysis of Fe2O3-TiO2-Au nanocomposites prepared by a plasma-assisted route. Surface Science Spectra, 2016, 23, 61-69.	0.3	10
49	Fe2O3-WO3 nanosystems synthesized by a hybrid CVD/sputtering route, and analyzed by X-ray photoelectron spectroscopy. Surface Science Spectra, 2016, 23, 93-101.	0.3	4
50	Fe2O3-TiO2 nanocomposites on activated carbon fibers by a plasma-assisted approach. Surface and Coatings Technology, 2016, 307, 352-358.	2.2	10
51	Advances in photocatalytic NO _x abatement through the use of Fe ₂ O ₃ /TiO ₂ nanocomposites. RSC Advances, 2016, 6, 74878-74885.	1.7	39
52	Novel two-step vapor-phase synthesis of UV–Vis light active Fe2O3/WO3 nanocomposites for phenol degradation. Environmental Science and Pollution Research, 2016, 23, 20350-20359.	2.7	12
53	Plasmaâ€Assisted Fabrication of Fe ₂ O ₃ Co ₃ O ₄ Nanomaterials as Anodes for Photoelectrochemical Water Splitting. Plasma Processes and Polymers, 2016, 13, 191-200.	1.6	39
54	Hydrogen Production: Iron-Titanium Oxide Nanocomposites Functionalized with Gold Particles: From Design to Solar Hydrogen Production (Adv. Mater. Interfaces 16/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0

#	Article	IF	CITATIONS
55	Iron–Titanium Oxide Nanocomposites Functionalized with Gold Particles: From Design to Solar Hydrogen Production. Advanced Materials Interfaces, 2016, 3, 1600348.	1.9	18
56	TiO2-Fe2O3 and Co3O4-Fe2O3 nanocomposites analyzed by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2015, 22, 34-46.	0.3	7
57	Fe ₂ O ₃ –TiO ₂ Nanoâ€heterostructure Photoanodes for Highly Efficient Solar Water Oxidation. Advanced Materials Interfaces, 2015, 2, 1500313.	1.9	103
58	PECVD of <i>Hematite</i> Nanoblades and Nanocolumns: Synthesis, Characterization, and Growth Model. Chemical Vapor Deposition, 2015, 21, 294-299.	1.4	12
59	Interplay of thickness and photoelectrochemical properties in nanostructured α-Fe ₂ O ₃ thin films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1501-1507.	0.8	21
60	Electrical characteristics of vapor deposited amorphous MoS2 two-terminal structures and back gate thin film transistors with Al, Au, Cu and Ni-Au contacts. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 975-979.	0.8	3
61	Hot-wire vapor deposition of amorphous MoS2 thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 969-974.	0.8	4
62	An old workhorse for new applications: Fe(dpm) ₃ as a precursor for low-temperature PECVD of iron(<scp>iii</scp>) oxide. Physical Chemistry Chemical Physics, 2015, 17, 11174-11181.	1.3	20
63	Fe ₂ O ₃ –TiO ₂ nanosystems by a hybrid PE-CVD/ALD approach: controllable synthesis, growth mechanism, and photocatalytic properties. CrystEngComm, 2015, 17, 6219-6226.	1.3	37
64	A study of Pt/α-Fe2O3 Nanocomposites by XPS. Surface Science Spectra, 2015, 22, 47-57.	0.3	10
65	Pt-functionalized Fe ₂ O ₃ photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox state. Physical Chemistry Chemical Physics, 2015, 17, 12899-12907.	1.3	45
66	Vapor Phase Processing of α-Fe ₂ O ₃ Photoelectrodes for Water Splitting: An Insight into the Structure/Property Interplay. ACS Applied Materials & Interfaces, 2015, 7, 8667-8676.	4.0	76
67	Fabrication and Characterization of Fe ₂ O ₃ -Based Nanostructures Functionalized with Metal Particles and Oxide Overlayers. Journal of Advanced Microscopy Research, 2015, 10, 239-243.	0.3	0
68	Fe2O3-CuO Nanocomposites Prepared by a Two-step Vapor Phase Strategy and Analyzed by XPS. Surface Science Spectra, 2014, 21, 1-9.	0.3	6
69	Opening the Pandora's jar of molecule-to-material conversion in chemical vapor deposition: Insights from theory. International Journal of Quantum Chemistry, 2014, 114, 1-7.	1.0	20
70	Surface Decoration of <i>ïµ</i> â€Fe ₂ O ₃ Nanorods by CuO Via a Two‣tep CVD/Sputtering Approach ** . Chemical Vapor Deposition, 2014, 20, 313-319.	1.4	11
71	Self-Cleaning and Anti-Fogging Surfaces Based on Nanostructured Metal Oxides. Advances in Science and Technology, 2014, 91, 39-47.	0.2	3
72	Tailoring iron(<scp>III</scp>) oxide nanomorphology by chemical vapor deposition: Growth and characterization. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 316-322.	0.8	12

#	Article	IF	CITATIONS
73	Enhanced Hydrogen Production by Photoreforming of Renewable Oxygenates Through Nanostructured Fe ₂ O ₃ Polymorphs. Advanced Functional Materials, 2014, 24, 372-378.	7.8	146
74	CVD precursors for transition metal oxide nanostructures: molecular properties, surface behavior and temperature effects. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 251-259.	0.8	24
75	Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals. RSC Advances, 2014, 4, 52140-52146.	1.7	7
76	A plasma-assisted approach for the controlled dispersion of CuO aggregates into β iron(<scp>iii</scp>) oxide matrices. CrystEngComm, 2014, 16, 8710-8716.	1.3	29
77	Fe 2 O 3 nanostructures on SrTiO 3 (1 1 1) by chemical vapor deposition: Growth and characterization. Materials Letters, 2014, 136, 141-145.	1.3	5
78	Solar H2generation via ethanol photoreforming on ε-Fe2O3nanorod arrays activated by Ag and Au nanoparticles. RSC Advances, 2014, 4, 32174.	1.7	40
79	Au/Îu-Fe ₂ O ₃ Nanocomposites as Selective NO ₂ Gas Sensors. Journal of Physical Chemistry C, 2014, 118, 11813-11819.	1.5	81
80	Nanostructured iron(III) oxides: From design to gas- and liquid-phase photo-catalytic applications. Thin Solid Films, 2014, 564, 121-127.	0.8	28
81	Surface Functionalization of Nanostructured Fe ₂ O ₃ Polymorphs: From Design to Light-Activated Applications. ACS Applied Materials & Interfaces, 2013, 5, 7130-7138.	4.0	44
82	Microfabrication of MOS H2 sensors based on Pd-gate deposited by pulsed laser ablation. Sensors and Actuators B: Chemical, 2013, 186, 180-185.	4.0	2
83	Photoassisted H2 production by metal oxide nanomaterials fabricated through CVD-based approaches. Surface and Coatings Technology, 2013, 230, 219-227.	2.2	21
84	Columnar Fe2O3 arrays via plasma-enhanced growth: Interplay of fluorine substitution and photoelectrochemical properties. International Journal of Hydrogen Energy, 2013, 38, 14189-14199.	3.8	63
85	Fluorine doped Fe2O3 nanostructures by a one-pot plasma-assisted strategy. RSC Advances, 2013, 3, 23762.	1.7	26
86	<i>A Special Issue on</i> Plasma Processing of Nanomaterials. Nanoscience and Nanotechnology Letters, 2013, 4, 209-210.	0.4	0
87	Fluorine-Doped Iron Oxide Nanomaterials by Plasma Enhanced-CVD: An XPS Study. Surface Science Spectra, 2013, 20, 9-16.	0.3	10
88	Insights on Growth and Nanoscopic Investigation of Uncommon Iron Oxide Polymorphs. European Journal of Inorganic Chemistry, 2013, 2013, 5454-5461.	1.0	25
89	Supported F-Doped <l>l̂±</l> -Fe ₂ O ₃ Nanomaterials: Synthesis, Characterization and Photo-Assisted H ₂ Production. Journal of Nanoscience and Nanotechnology, 2013, 13, 4962-4968.	0.9	42
90	Ag and Pt Particles Sputtered on β-Fe2O3: An XPS Investigation. Surface Science Spectra, 2012, 19, 1-12.	0.3	16

#	Article	IF	CITATIONS
91	Controlled synthesis and properties of β-Fe2O3 nanosystems functionalized with Ag or Pt nanoparticles. CrystEngComm, 2012, 14, 6469.	1.3	51
92	Epitaxial-like Growth of Co ₃ O ₄ /ZnO Quasi-1D Nanocomposites. Crystal Growth and Design, 2012, 12, 5118-5124.	1.4	22
93	Vaporâ€Phase Fabrication of βâ€Iron Oxide Nanopyramids for Lithiumâ€Ion Battery Anodes. ChemPhysChem, 2012, 13, 3798-3801.	1.0	21
94	β-Fe ₂ O ₃ nanomaterials from an iron(<scp>ii</scp>) diketonate-diamine complex: a study from molecular precursor to growth process. Dalton Transactions, 2012, 41, 149-155.	1.6	63
95	Ag/ZnO nanomaterials as high performance sensors for flammable and toxic gases. Nanotechnology, 2012, 23, 025502.	1.3	48
96	Multi-component oxide nanosystems by Chemical Vapor Deposition and related routes: challenges and perspectives. CrystEngComm, 2012, 14, 6347.	1.3	41
97	On the Performances of Cu _{<i>x</i>} O-TiO ₂ (<i>x</i> = 1, 2) Nanomaterials As Innovative Anodes for Thin Film Lithium Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3610-3619.	4.0	64
98	Co ₃ O ₄ /ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications. ACS Applied Materials & Interfaces, 2012, 4, 928-934.	4.0	141
99	Vertically oriented CuO/ZnO nanorod arrays: from plasma-assisted synthesis to photocatalytic H2 production. Journal of Materials Chemistry, 2012, 22, 11739.	6.7	108
100	CuO/ZnO Nanocomposite Gas Sensors Developed by a Plasmaâ€Assisted Route. ChemPhysChem, 2012, 13, 2342-2348.	1.0	55
101	Manufacturing of inorganic nanomaterials: concepts and perspectives. Nanoscale, 2012, 4, 2813.	2.8	43
102	An iron(II) diamine diketonate molecular complex: Synthesis, characterization and application in the CVD of Fe2O3 thin films. Inorganica Chimica Acta, 2012, 380, 161-166.	1.2	40
103	Zinc and Copper Oxides Functionalized with Metal Nanoparticles: An Insight Into Their Nano-Organization. Journal of Advanced Microscopy Research, 2012, 7, 84-90.	0.3	2
104	Metal/oxide interfaces in inorganic nanosystems: what's going on and what's next?. Journal of Materials Chemistry, 2011, 21, 1648-1654.	6.7	28
105	Strongly oriented Co3O4 thin films on MgO(100) and MgAl2O4(100) substrates by PE-CVD. CrystEngComm, 2011, 13, 3670.	1.3	26
106	Tailored Vapor-Phase Growth of Cu _{<i>x</i>} O–TiO ₂ (<i>x</i> = 1, 2) Nanomaterials Decorated with Au Particles. Langmuir, 2011, 27, 6409-6417.	1.6	42
107	Stability Study of a Magnesium \hat{l}^2 -Diketonate As Precursor for Chemical Vapor Deposition of MgO. Chemistry of Materials, 2011, 23, 1113-1119.	3.2	20
108	F-Doped Co ₃ O ₄ Photocatalysts for Sustainable H ₂ Generation from Water/Ethanol. Journal of the American Chemical Society, 2011, 133, 19362-19365.	6.6	171

#	Article	IF	CITATIONS
109	Malonate complexes of dysprosium: synthesis, characterization and application for LI-MOCVD of dysprosium containing thin films. Dalton Transactions, 2011, 40, 62-78.	1.6	21
110	Novel Synthesis and Gas Sensing Performances of CuO–TiO ₂ Nanocomposites Functionalized with Au Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 10510-10517.	1.5	133
111	Fe2O3-TiO2 systems grown by MOCVD: an XPS study. Surface Science Spectra, 2011, 18, 29-35.	0.3	10
112	Surface-Driven Porphyrin Self-Assembly on Pre-Activated Si Substrates. Journal of Nanoscience and Nanotechnology, 2011, 11, 3235-3244.	0.9	1
113	Atomic Vapor Deposition Approach to In ₂ O ₃ Thin Films. Journal of Nanoscience and Nanotechnology, 2011, 11, 8094-8100.	0.9	8
114	Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors. Sensors and Actuators B: Chemical, 2011, 160, 79-86.	4.0	56
115	Plasma-assisted synthesis of Ag/ZnO nanocomposites: First example of photo-induced H2 production and sensing. International Journal of Hydrogen Energy, 2011, 36, 15527-15537.	3.8	79
116	Supported Metal Oxide Nanosystems for Hydrogen Photogeneration: Quo Vadis?. Advanced Functional Materials, 2011, 21, 2611-2623.	7.8	126
117	Hydrogen Photogeneration: Supported Metal Oxide Nanosystems for Hydrogen Photogeneration: Quo Vadis? (Adv. Funct. Mater. 14/2011). Advanced Functional Materials, 2011, 21, 2610-2610.	7.8	1
118	Photocatalytic H ₂ and Addedâ€Value Byâ€Products – The Role of Metal Oxide Systems in Their Synthesis from Oxygenates. European Journal of Inorganic Chemistry, 2011, 2011, 4309-4323.	1.0	134
119	Synergistic Role of B and F Dopants in Promoting the Photocatalytic Activity of <i>Rutile</i> TiO ₂ . ChemPhysChem, 2011, 12, 2221-2224.	1.0	42
120	MOCVD of ZnO Films from <i>Bis</i> (Ketoiminato)Zn(II) Precursors: Structure, Morphology and Optical Properties. Chemical Vapor Deposition, 2011, 17, 155-161.	1.4	27
121	How Does Cu ^{II} Convert into Cu ^I ? An Unexpected Ringâ€Mediated Singleâ€Electron Reduction. Chemistry - A European Journal, 2011, 17, 10864-10870.	1.7	31
122	Plasma Processing of Nanomaterials: Emerging Technologies for Sensing and Energy Applications. Journal of Nanoscience and Nanotechnology, 2011, 11, 8206-8213.	0.9	27
123	p-Co3O4/n-ZnO, Obtained by PECVD, Analyzed by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2011, 18, 36-45.	0.3	8
124	Ag/ZnO Nanocomposites Studied by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2011, 18, 19-28.	0.3	8
125	RF-sputtering preparation of gold-nanoparticle-modified ITO electrodes for electrocatalytic applications. Nanotechnology, 2011, 22, 275711.	1.3	21
126	Cobalt Oxide Nanomaterials by Vapor-Phase Synthesis for Fast and Reversible Lithium Storage. Journal of Physical Chemistry C, 2010, 114, 10054-10060.	1.5	61

#	Article	IF	CITATIONS
127	ZnO Nanorod Arrays by Plasmaâ€Enhanced CVD for Lightâ€Activated Functional Applications. ChemPhysChem, 2010, 11, 2337-2340.	1.0	40
128	Special Issue on â€~CVD and Hydrogen'. Chemical Vapor Deposition, 2010, 16, 264-265.	1.4	0
129	CVD Co ₃ O ₄ Nanopyramids: a Nanoâ€Platform for Photoâ€Assisted H ₂ Production. Chemical Vapor Deposition, 2010, 16, 296-300.	1.4	29
130	Heteroleptic Guanidinate―and Amidinateâ€Based Complexes of Hafnium as New Precursors for MOCVD of HfO ₂ . European Journal of Inorganic Chemistry, 2010, 2010, 1679-01688.	1.0	28
131	"Hot―Surface Activation of Molecular Complexes: Insight from Modeling Studies. Angewandte Chemie - International Edition, 2010, 49, 1944-1948.	7.2	50
132	1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases. Sensors and Actuators B: Chemical, 2010, 149, 1-7.	4.0	169
133	Novel insight into the alignment and structural ordering of supported ZnO nanorods. Chemical Physics Letters, 2010, 500, 287-290.	1.2	25
134	CuO/ZnO Nanocomposites Investigated by X-ray Photoelectron and X-ray Excited Auger Electron Spectroscopies. Surface Science Spectra, 2010, 17, 93-101.	0.3	9
135	Vapor Phase Synthesis, Characterization and Gas Sensing Performances of Co ₃ O ₄ and Au/Co ₃ O ₄ Nanosystems. Journal of Nanoscience and Nanotechnology. 2010. 10. 8054-8061.	0.9	35
136	Highly Oriented ZnO Nanorod Arrays by a Novel Plasma Chemical Vapor Deposition Process. Crystal Growth and Design, 2010, 10, 2011-2018.	1.4	89
137	Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization. CrystEngComm, 2010, 12, 2185.	1.3	110
138	Urchin-like ZnO nanorod arrays for gas sensing applications. CrystEngComm, 2010, 12, 3419.	1.3	90
139	CuxO - TiO2Composites (x=1, 2) Studied by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2009, 16, 1-12.	0.3	11
140	Chemical Vapor Deposition of Cu <inf>2</inf> O and CuO nanosystems for innovative gas sensors. , 2009, , .		3
141	Innovative M(Hfa)2•TMEDA (M=Cu, Co) Precursors for the CVD of Copper-Cobalt Oxides: an Integrated Theoretical and Experimental Approach. ECS Transactions, 2009, 25, 549-556.	0.3	10
142	MOCVD of Niobium Nitrides and Oxy-Nitrides using an All-Nitrogen-Coordinated Precursor: Thin-film Deposition and Mechanistic Study. ECS Transactions, 2009, 16, 235-242.	0.3	3
143	MOCVD Of Gallium Oxide Thin Films Using Homoleptic Gallium Complexes: Precursor Evaluation and Thin Film Characterisation. ECS Transactions, 2009, 25, 617-624.	0.3	7
144	Gas Sensing Performances of Copper Oxide Films and Quasi 1-D Nanoarchitectures. , 2009, , .		0

#	Article	IF	CITATIONS
145	Multi-Functional Copper Oxide Nanosystems for H2 Sustainable Production and Sensing. ECS Transactions, 2009, 25, 1169-1176.	0.3	13
146	Rational Design of Ag/TiO ₂ Nanosystems by a Combined RFâ€Sputtering/Solâ€Gel Approach. ChemPhysChem, 2009, 10, 3249-3259.	1.0	62
147	The Potential of Supported Cu ₂ O and CuO Nanosystems in Photocatalytic H ₂ Production. ChemSusChem, 2009, 2, 230-233.	3.6	225
148	Deposition of Niobium Nitride Thin Films from <i>Tert</i> â€Butylamidoâ€ <i>Tris</i> â€(Diethylamido)â€Niobium by a Modified Industrial MOCVD Reactor. Chemical Vapor Deposition, 2009, 15, 334-341.	1.4	16
149	Novel Gallium Complexes with Malonic Diester Anions as Molecular Precursors for the MOCVD of Ga ₂ O ₃ Thin Films. European Journal of Inorganic Chemistry, 2009, 2009, 1110-1117.	1.0	28
150	Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sensors and Actuators B: Chemical, 2009, 141, 270-275.	4.0	114
151	Photoinduced superhydrophilicity and photocatalytic properties of ZnO nanoplatelets. Surface and Coatings Technology, 2009, 203, 2041-2045.	2.2	50
152	Investigation of niobium nitride and oxy-nitride films grown by MOCVD. Surface and Coatings Technology, 2009, 204, 404-409.	2.2	20
153	CVD of Copper Oxides from a \hat{l}^2 -Diketonate Diamine Precursor: Tailoring the Nano-Organization. Crystal Growth and Design, 2009, 9, 2470-2480.	1.4	70
154	A Cobalt(II) Hexafluoroacetylacetonate Ethylenediamine Complex As a CVD Molecular Source of Cobalt Oxide Nanostructures. Inorganic Chemistry, 2009, 48, 82-89.	1.9	45
155	Hafnium carbamates and ureates: new class of precursors for low-temperature growth of HfO2 thin films. Chemical Communications, 2009, , 1978.	2.2	20
156	An integrated experimental and theoretical investigation on Cu(hfa)2·TMEDA: structure, bonding and reactivity. Physical Chemistry Chemical Physics, 2009, 11, 5998.	1.3	43
157	Lanthanide Oxide Thin Films by Metalorganic Chemical Vapor Deposition Employing Volatile Guanidinate Precursors. Chemistry of Materials, 2009, 21, 5443-5455.	3.2	41
158	A soft Plasma Enhanced-Chemical Vapor Deposition process for the tailored synthesis of SiO2 films. Thin Solid Films, 2008, 516, 7393-7399.	0.8	13
159	Silica-sandwiched Au nanoparticle arrays by a soft PE-CVD/RF sputtering approach. Nanotechnology, 2008, 19, 255602.	1.3	12
160	Gas Sensing Properties of Columnar CeO2 Nanostructures Prepared by Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2008, 8, 1012-1016.	0.9	26
161	TiO2 Thin Films by Chemical Vapor Deposition: An XPS Characterization. Surface Science Spectra, 2007, 14, 27-33.	0.3	34
162	ZnO Nanoplatelets Obtained by Chemical Vapor Deposition, Studied by XPS. Surface Science Spectra, 2007, 14, 19-26.	0.3	40

10

#	Article	IF	CITATIONS
163	Structure and Optical Properties of Silica-Supported Ag–Au Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 2480-2486.	0.9	11
164	Columnar CeO2nanostructures for sensor application. Nanotechnology, 2007, 18, 125502.	1.3	92
165	Photocatalytic and antibacterial activity of TiO ₂ and Au/TiO ₂ nanosystems. Nanotechnology, 2007, 18, 375709.	1.3	197
166	First Example of ZnOâ^'TiO ₂ Nanocomposites by Chemical Vapor Deposition:  Structure, Morphology, Composition, and Gas Sensing Performances. Chemistry of Materials, 2007, 19, 5642-5649.	3.2	164
167	Functional Metal Oxide Nanosystems by a Hybrid CVD/Sol–Gel Approach. Chemical Vapor Deposition, 2007, 13, 112-117.	1.4	7
168	Low-Temperature PECVD of Transparent SiOxCyHz Thin Films. Chemical Vapor Deposition, 2007, 13, 205-210.	1.4	8
169	Temperatureâ€Controlled Synthesis and Photocatalytic Performance of ZnO Nanoplatelets. Chemical Vapor Deposition, 2007, 13, 618-625.	1.4	48
170	TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chemical Physics, 2007, 339, 111-123.	0.9	194
171	Gd2O3 Nanostructured Thin Films Analyzed by XPS. Surface Science Spectra, 2007, 14, 60-67.	0.3	32
172	Nanostructured Dy2O3 films: An XPS Investigation. Surface Science Spectra, 2007, 14, 52-59.	0.3	41
173	CVD Cu2O and CuO Nanosystems Characterized by XPS. Surface Science Spectra, 2007, 14, 41-51.	0.3	90
174	Toward the Innovative Synthesis of Columnar CeO2Nanostructures. Langmuir, 2006, 22, 8639-8641.	1.6	33
175	Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look. Coordination Chemistry Reviews, 2006, 250, 1294-1314.	9.5	185
176	Silica-supported Ag-Au Bimetallic Nanosystems by XPS. Surface Science Spectra, 2006, 13, 1-8.	0.3	5
177	ZnO:Er(III) Nanosystems Analyzed by XPS. Surface Science Spectra, 2006, 13, 9-16.	0.3	9
178	Cerium (III) Fluoride Thin Films by XPS. Surface Science Spectra, 2006, 13, 87-93.	0.3	12
179	Silica-Based Thin Films by PE-CVD: An XPS Characterization. Surface Science Spectra, 2006, 13, 81-86.	0.3	0
180	Tailored synthesis of ZnO:Er(III) nanosystems by a hybrid rf-sputtering/sol-gel route. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1941-1947.	0.9	17

#	Article	IF	CITATIONS
181	Synthesis of Gold Nanotubes by Sputtering of Gold into Porous Materials. Journal of Nanoscience and Nanotechnology, 2005, 5, 1883-1886.	0.9	6
182	RF-sputtering of gold on silica surfaces: Evolution from clusters to continuous films. Materials Science and Engineering C, 2005, 25, 599-603.	3.8	34
183	CVD of Lanthanum Oxyfluoride-Based Thin Films from a Lanthanum β-Diketonate Diglyme Precursor. Chemical Vapor Deposition, 2005, 11, 426-432.	1.4	48
184	CadmiumO-alkylxanthates as CVD precursors of CdS: a chemical characterization. Applied Organometallic Chemistry, 2005, 19, 59-67.	1.7	38
185	Synthesis and characterization of zinc bis(O-isopropylxanthate) as a single-source chemical vapor deposition precursor for ZnS. Applied Organometallic Chemistry, 2005, 19, 1002-1009.	1.7	19
186	Preparation of Gold Nanoparticles on Silica Substrate by Radio Frequency Sputtering. Journal of Nanoscience and Nanotechnology, 2005, 5, 259-265.	0.9	16
187	LaCoO ₃ Nanosystems by a Hybrid CVD/Sol–Gel Approach. Journal of Nanoscience and Nanotechnology, 2005, 5, 781-785.	0.9	9
188	Gold Nanotubes by Template-Directed Synthesis. Journal of Nanoscience and Nanotechnology, 2005, 5, 994-998.	0.9	3
189	Optical and electrical properties of nanostructured LaCoO3 thin films. Applied Physics Letters, 2005, 87, 061909.	1.5	15
190	Silica-supported silver nanoparticles: Tailoring of structure-property relationships. Journal of Applied Physics, 2005, 97, 054311.	1.1	29
191	Hybrid Chemical Vapor Deposition/Solâ^'Gel Route in the Preparation of Nanophasic LaCoO3 Films. Chemistry of Materials, 2005, 17, 427-433.	3.2	31
192	CVD of Nanosized ZnS and CdS Thin Films from Single-Source Precursors. Journal of the Electrochemical Society, 2004, 151, G428.	1.3	43
193	Influence of process parameters on the morphology of Auâ^•SiO2 nanocomposites synthesized by radio-frequency sputtering. Journal of Applied Physics, 2004, 96, 1655-1665.	1.1	56
194	Nanocrystalline Lanthanum Oxyfluoride Thin Films by XPS. Surface Science Spectra, 2004, 11, 52-58.	0.3	10
195	Pure and Ca-doped LaCoO3 Nanopowders: Sol-Gel Synthesis, Characterization and Magnetic Properties. Materials Research Society Symposia Proceedings, 2004, 848, 480.	0.1	0
196	Nucleation and Growth of Gold Nanoparticles Deposited by RF-Sputtering: An Experimental Study. Materials Research Society Symposia Proceedings, 2004, 818, 227.	0.1	2
197	Au/TiO2Nanosystems:Â A Combined RF-Sputtering/Solâ^'Gel Approach. Chemistry of Materials, 2004, 16, 3331-3338.	3.2	71
198	Silica-Supported Erbium-based Nanosystems: An XPS Characterization. Surface Science Spectra, 2004, 11, 26-32.	0.3	8

#	Article	IF	CITATIONS
199	CVD of Nanophasic (Zn, Cd)S Thin Films: From Multi-Layers to Solid Solutions. Chemical Vapor Deposition, 2004, 10, 229-236.	1.4	63
200	Innovative Approaches to Oxide Nanosystems: CeO2-ZrO2 Nanocomposites by a Combined PE-CVD/Sol-Gel Route. Chemical Vapor Deposition, 2004, 10, 257-264.	1.4	23
201	Au/SiO2 Nanosystems by XPS. Surface Science Spectra, 2003, 10, 21-31.	0.3	12
202	Introduction to XPS Studies of Metal and Metal-oxide Nanosystems. Surface Science Spectra, 2003, 10, 137-142.	0.3	18
203	Au Nanoparticles Supported on HOPG: An XPS Characterization. Surface Science Spectra, 2003, 10, 164-169.	0.3	2
204	Study of Ag/SiO2 Nanosystems by XPS. Surface Science Spectra, 2003, 10, 170-181.	0.3	12
205	Nucleation and Growth of Nanophasic CeO2 Thin Films by Plasma-Enhanced CVD. Chemical Vapor Deposition, 2003, 9, 199-206.	1.4	75
206	Nanostructure and optical properties of CeO2 thin films obtained by plasma-enhanced chemical vapor deposition. Materials Science and Engineering C, 2003, 23, 1013-1016.	3.8	61
207	Characterization of AU/TIO2 Nanocomposites by XPS. Surface Science Spectra, 2003, 10, 1-7.	0.3	17
208	LaCoO3 Nanosystems by a Hybrid CVD/Sol-Gel Route: An XPS Investigation. Surface Science Spectra, 2003, 10, 143-149.	0.3	11
209	Analysis of Nanocrystalline ZnS Thin Films by XPS. Surface Science Spectra, 2002, 9, 54-61.	0.3	51
210	Initial growth stages of CeO2 nanosystems by Plasma-Enhanced Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2002, 756, 1.	0.1	1
211	Nanostructured Cadmium Sulfide Thin Films by XPS. Surface Science Spectra, 2002, 9, 46-53.	0.3	27
212	A Study of Nanophase Tungsten Oxides Thin Films by XPS. Surface Science Spectra, 2001, 8, 258-267.	0.3	53
213	Plasma-Enhanced CVD CeO2 Nanocrystalline Thin Films Analyzed by XPS. Surface Science Spectra, 2001, 8, 247-257.	0.3	43