
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9396230/publications.pdf Version: 2024-02-01

ANNETTE C DOLDHIN

#	Article	IF	CITATIONS
1	Amino acid sensor conserved from bacteria to humans. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110415119.	3.3	31
2	Biallelic <i>CACNA2D1</i> loss-of-function variants cause early-onset developmental epileptic encephalopathy. Brain, 2022, 145, 2721-2729.	3.7	15
3	ADAM17 mediates proteolytic maturation of voltage-gated calcium channel auxiliary α2δ subunits, and enables calcium current enhancement. Function, 2022, 3, zqac013.	1.1	3
4	Proteolytic regulation of calcium channels - avoiding controversy Faculty Reviews, 2022, 11, 5.	1.7	0
5	How Postdoctoral Research in Paul Greengard's Laboratory Shaped My Scientific Career, Although I Never Did Another Phosphorylation Assay. Journal of Neuroscience, 2021, 41, 2070-2075.	1.7	0
6	Rab11-dependent recycling of calcium channels is mediated by auxiliary subunit α2δ-1 but not α2δ-3. Scientific Reports, 2021, 11, 10256.	1.6	13
7	Voltage-gated calcium channel blockers for psychiatric disorders: genomic reappraisal. British Journal of Psychiatry, 2020, 216, 250-253.	1.7	35
8	Introduction to the Theme "Ion Channels and Neuropharmacology: From the Past to the Future― Annual Review of Pharmacology and Toxicology, 2020, 60, 1-6.	4.2	13
9	Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nature Reviews Neuroscience, 2020, 21, 213-229.	4.9	136
10	Fight or flight: The culprit is lurking in the neighbourhood. Cell Calcium, 2020, 87, 102180.	1.1	1
11	FMRP regulates presynaptic localization of neuronal voltage gated calcium channels. Neurobiology of Disease, 2020, 138, 104779.	2.1	25
12	Functions of Presynaptic Voltage-gated Calcium Channels. Function, 2020, 2, zqaa027.	1.1	27
13	Disruption of the Key Ca2+ Binding Site in the Selectivity Filter of Neuronal Voltage-Gated Calcium Channels Inhibits Channel Trafficking. Cell Reports, 2019, 29, 22-33.e5.	2.9	17
14	lgGs from patients with amyotrophic lateral sclerosis and diabetes target CaVα2δ1 subunits impairing islet cell function and survival. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26816-26822.	3.3	11
15	Mapping protein interactions of sodium channel Na _V 1.7 using epitopeâ€ŧagged geneâ€ŧargeted mice. EMBO Journal, 2018, 37, 427-445.	3.5	54
16	The α2δ-like Protein Cachd1 Increases N-type Calcium Currents and Cell Surface Expression and Competes with α2δ-1. Cell Reports, 2018, 25, 1610-1621.e5.	2.9	40
17	Ablation of α ₂ Ĩ´-1 inhibits cell-surface trafficking of endogenous N-type calcium channels in the pain pathway in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12043-E12052.	3.3	55
18	Voltage-gated calcium channels: Their discovery, function and importance as drug targets. Brain and Neuroscience Advances, 2018, 2, 239821281879480.	1.8	46

#	Article	IF	CITATIONS
19	Proteolytic maturation of $\hat{l}\pm 2\hat{l}$ controls the probability of synaptic vesicular release. ELife, 2018, 7, .	2.8	32
20	Voltage-gated calcium channel α2δ subunits: an assessment of proposed novel roles. F1000Research, 2018, 7, 1830.	0.8	71
21	The role of N-type calcium channels and their auxiliary subunits in pain pathways. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY19-4.	0.0	Ο
22	LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α2δ-1 subunit. Scientific Reports, 2017, 7, 43802.	1.6	37
23	Calmodulin regulates Cav3 T-type channels at their gating brake. Journal of Biological Chemistry, 2017, 292, 20010-20031.	1.6	29
24	T-type Ca ²⁺ channels are required for enhanced sympathetic axon growth by TNFα reverse signalling. Open Biology, 2017, 7, 160288.	1.5	13
25	Voltageâ€gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. Journal of Physiology, 2016, 594, 5369-5390.	1.3	262
26	Effect of knockout of α ₂ δ-1 on action potentials in mouse sensory neurons. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150430.	1.8	16
27	The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination. Journal of Biological Chemistry, 2016, 291, 20402-20416.	1.6	28
28	Thrombospondin-4 reduces binding affinity of [3H]-gabapentin to calcium-channel α2δ-1-subunit but does not interact with α2δ-1 on the cell-surface when co-expressed. Scientific Reports, 2016, 6, 24531.	1.6	34
29	A CaV2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant. Neurobiology of Disease, 2016, 93, 243-256.	2.1	7
30	Proteolytic maturation of α2δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels. ELife, 2016, 5, .	2.8	43
31	Alternative Splicing in Ca _V 2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs. Journal of Neuroscience, 2015, 35, 14636-14652.	1.7	40
32	The Upregulation of α ₂ δ-1 Subunit Modulates Activity-Dependent Ca ²⁺ Signals in Sensory Neurons. Journal of Neuroscience, 2015, 35, 5891-5903.	1.7	44
33	The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacological Reviews, 2015, 67, 821-870.	7.1	793
34	Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in Neurobiology, 2015, 134, 36-54.	2.8	187
35	Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary α ₂ δ-1 subunits. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8979-8984.	3.3	119
36	The inhibition of functional expression of calcium channels by prion protein demonstrates competition with α2δ for GPI-anchoring pathways. Biochemical Journal, 2014, 458, 365-374.	1.7	11

#	Article	IF	CITATIONS
37	Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nature Communications, 2014, 5, 3628.	5.8	113
38	Differential upregulation in DRG neurons of an α2δ-1 splice variant with a lower affinity for gabapentin after peripheral sensory nerve injury. Pain, 2014, 155, 522-533.	2.0	36
39	Regulation of Voltage-Gated Calcium Channel Trafficking and Function by Auxiliary Subunits. Biophysical Journal, 2014, 106, 220a.	0.2	Ο
40	Altered expression of the voltage-gated calcium channel subunit α2δ-1: A comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain. Neuroscience, 2014, 283, 124-137.	1.1	26
41	Using Exofacially Tagged Functional Cav2.2 to Investigate the Modulation of Pore Subunit Trafficking by Auxiliary Calcium Channel Subunits. Biophysical Journal, 2014, 106, 330a.	0.2	2
42	The Involvement of Calcium Channel α2δ Subunits in Diseases and as a Therapeutic Target. , 2014, , 97-114.		2
43	Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nature Genetics, 2013, 45, 1055-1060.	9.4	446
44	The α2δ subunits of voltage-gated calcium channels. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1541-1549.	1.4	173
45	α ₂ δ-1 Gene Deletion Affects Somatosensory Neuron Function and Delays Mechanical Hypersensitivity in Response to Peripheral Nerve Damage. Journal of Neuroscience, 2013, 33, 16412-16426.	1.7	105
46	L-Type Calcium Channels: On the Fast Track to Nuclear Signaling. Science Signaling, 2012, 5, pe34.	1.6	13
47	Chronic pregabalin inhibits synaptic transmission between rat dorsal root ganglion and dorsal horn neurons in culture. Channels, 2012, 6, 124-132.	1.5	46
48	Calcium Currents Are Enhanced by α2δ-1 Lacking Its Membrane Anchor. Journal of Biological Chemistry, 2012, 287, 33554-33566.	1.6	32
49	Mutant PrP Suppresses Glutamatergic Neurotransmission in Cerebellar Granule Neurons by Impairing Membrane Delivery of VGCC α2δ-1 Subunit. Neuron, 2012, 74, 300-313.	3.8	64
50	Voltage-Gated Calcium Channel α2δ Subunits in Lipid Rafts: The Importance of Proteolytic Cleavage Into α2 and δ. Biophysical Journal, 2012, 102, 125a.	0.2	1
51	Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nature Reviews Neuroscience, 2012, 13, 542-555.	4.9	324
52	α2δ expression sets presynaptic calcium channel abundance and release probability. Nature, 2012, 486, 122-125.	13.7	320
53	Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses. Nature Neuroscience, 2011, 14, 478-486.	7.1	154
54	β-Subunits Promote the Expression of CaV2.2 Channels by Reducing Their Proteasomal Degradation. Journal of Biological Chemistry, 2011, 286, 9598-9611.	1.6	104

ANNETTE C DOLPHIN

#	Article	IF	CITATIONS
55	Stargazin-related protein γ7 is associated with signalling endosomes in superior cervical ganglion neurons and modulates neurite outgrowth. Journal of Cell Science, 2011, 124, 2049-2057.	1.2	7
56	Pregabalin Suppresses Spinal Neuronal Hyperexcitability and Visceral Hypersensitivity in the Absence of Peripheral Pathophysiology. Anesthesiology, 2011, 115, 144-152.	1.3	50
57	A new look at calcium channel $\hat{1}\pm 2\hat{1}'$ subunits. Current Opinion in Neurobiology, 2010, 20, 563-571.	2.0	88
58	Calcium channel α2δ subunits in epilepsy and as targets for antiepileptic drugs. Epilepsia, 2010, 51, 82-82.	2.6	3
59	The α ₂ δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1654-1659.	3.3	203
60	The α ₂ δLigand Gabapentin Inhibits the Rab11-Dependent Recycling of the Calcium Channel Subunit α ₂ δ-2. Journal of Neuroscience, 2010, 30, 12856-12867.	1.7	127
61	The anti-allodynic α2δligand pregabalin inhibits the trafficking of the calcium channel α2δ-1 subunit to presynaptic terminals <i>in vivo</i> . Biochemical Society Transactions, 2010, 38, 525-528.	1.6	82
62	Age of quantitative proteomics hits voltage-gated calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14941-14942.	3.3	2
63	N Terminus Is Key to the Dominant Negative Suppression of CaV2 Calcium Channels. Journal of Biological Chemistry, 2010, 285, 835-844.	1.6	50
64	Three-dimensional Structure of CaV3.1. Journal of Biological Chemistry, 2009, 284, 22310-22321.	1.6	41
65	The Increased Trafficking of the Calcium Channel Subunit α ₂ δ-1 to Presynaptic Terminals in Neuropathic Pain Is Inhibited by the α ₂ l´ Ligand Pregabalin. Journal of Neuroscience, 2009, 29, 4076-4088.	1.7	372
66	Labelling of the 3D structure of the cardiac L-type voltage-gated calcium channel. Channels, 2009, 3, 387-392.	1.5	10
67	Calcium channel diversity: multiple roles of calcium channel subunits. Current Opinion in Neurobiology, 2009, 19, 237-244.	2.0	206
68	Determinants of the voltage dependence of G protein modulation within calcium channel β subunits. Pflugers Archiv European Journal of Physiology, 2009, 457, 743-756.	1.3	18
69	Descending Serotonergic Facilitation and the Antinociceptive Effects of Pregabalin in a Rat Model of Osteoarthritic Pain. Molecular Pain, 2009, 5, 1744-8069-5-45.	1.0	116
70	Vesicular apparatus, including functional calcium channels, are present in developing rodent optic nerve axons and are required for normal node of Ranvier formation. Journal of Physiology, 2008, 586, 4069-4089.	1.3	47
71	Time course and specificity of the pharmacological disruption of the trafficking of voltage-gated calcium channels by gabapentin. Channels, 2008, 2, 4-9.	1.5	55
72	Pharmacological disruption of calcium channel trafficking by the α ₂ δligand gabapentin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3628-3633.	3.3	353

#	Article	IF	CITATIONS
73	The Stargazin-Related Protein γ7 Interacts with the mRNA-Binding Protein Heterogeneous Nuclear Ribonucleoprotein A2 and Regulates the Stability of Specific mRNAs, Including Ca _V 2.2. Journal of Neuroscience, 2008, 28, 10604-10617.	1.7	35
74	The HOOK-Domain Between the SH3- and the GK-Domains of Ca _V β Subunits Contains Key Determinants Controlling Calcium Channel Inactivation. Channels, 2007, 1, 92-101.	1.5	32
75	Functional biology of the α2δ subunits of voltage-gated calcium channels. Trends in Pharmacological Sciences, 2007, 28, 220-228.	4.0	334
76	Gender: missing the prizes that can inspire a career. Nature, 2006, 442, 868-868.	13.7	1
77	A short history of voltage-gated calcium channels. British Journal of Pharmacology, 2006, 147, S56-S62.	2.7	170
78	The importance of occupancy rather than affinity of CaVβ subunits for the calcium channel I-II linker in relation to calcium channel function. Journal of Physiology, 2006, 574, 387-398.	1.3	26
79	The Calcium Channel Â2Â-2 Subunit Partitions with CaV2.1 into Lipid Rafts in Cerebellum: Implications for Localization and Function. Journal of Neuroscience, 2006, 26, 8748-8757.	1.7	142
80	Identification of the Â2-Â-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17537-17542.	3.3	523
81	The ducky2J Mutation in Cacna2d2 Results in Reduced Spontaneous Purkinje Cell Activity and Altered Gene Expression. Journal of Neuroscience, 2006, 26, 12576-12586.	1.7	61
82	Interaction via a Key Tryptophan in the I-II Linker of N-Type Calcium Channels Is Required for Â1 But Not for Palmitoylated Â2, Implicating an Additional Binding Site in the Regulation of Channel Voltage-Dependent Properties. Journal of Neuroscience, 2005, 25, 6984-6996.	1.7	75
83	The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of Â2Â subunits is key to trafficking voltage-gated Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11230-11235.	3.3	192
84	Dominant-Negative Calcium Channel Suppression by Truncated Constructs Involves a Kinase Implicated in the Unfolded Protein Response. Journal of Neuroscience, 2004, 24, 5400-5409.	1.7	77
85	The Three-dimensional Structure of the Cardiac L-type Voltage-gated Calcium Channel. Journal of Biological Chemistry, 2004, 279, 7159-7168.	1.6	51
86	Ca2+ channel β-subunits: structural insights AID our understanding. Trends in Pharmacological Sciences, 2004, 25, 626-632.	4.0	100
87	L-type voltage-gated calcium channels: understanding function through structure. FEBS Letters, 2004, 564, 245-250.	1.3	34
88	PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nature Neuroscience, 2004, 7, 939-946.	7.1	235
89	Subunits of Voltage-Gated Calcium Channels. Journal of Bioenergetics and Biomembranes, 2003, 35, 599-620.	1.0	322
90	Human neuronal stargazin-like proteins, gamma2, gamma3 and gamma4; an investigation of their specific localization in human brain and their influence on CaV2.1 voltage-dependent calcium channels expressed in Xenopus oocytes. BMC Neuroscience, 2003, 4, 23.	0.8	40

#	Article	IF	CITATIONS
91	G Protein Modulation of Voltage-Gated Calcium Channels. Pharmacological Reviews, 2003, 55, 607-627.	7.1	260
92	Mechanism of Action of Gqto Inhibit Gβγ Modulation of CaV2.2 Calcium Channels: Probed by the Use of Receptor-Gα Tandems. Molecular Pharmacology, 2003, 63, 832-843.	1.0	16
93	Calcium Channel α2δ Subunits: Structure, Functions and Target Site for Drugs. Current Neuropharmacology, 2003, 1, 209-217.	1.4	37
94	The Ducky Mutation in Cacna2d2 Results in Altered Purkinje Cell Morphology and Is Associated with the Expression of a Truncated α2δ-2 Protein with Abnormal Function. Journal of Biological Chemistry, 2002, 277, 7684-7693.	1.6	137
95	3D Structure of the Skeletal Muscle Dihydropyridine Receptor. Journal of Molecular Biology, 2002, 323, 85-98.	2.0	47
96	Kinetics and Gβγ modulation of Cav2.2 channels with different auxiliary β subunits. Pflugers Archiv European Journal of Physiology, 2002, 444, 263-275.	1.3	19
97	The novel product of a five-exon stargazin-related gene abolishes CaV2.2 calcium channel expression. EMBO Journal, 2002, 21, 1514-1523.	3.5	79
98	Evidence for Two Concentration-Dependent Processes for β-Subunit Effects on α1B Calcium Channels. Biophysical Journal, 2001, 81, 1439-1451.	0.2	104
99	Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the <i>Cacna2d2</i> Gene and Decreased Calcium Channel Current in Cerebellar Purkinje Cells. Journal of Neuroscience, 2001, 21, 6095-6104.	1.7	289
100	Dominant-Negative Synthesis Suppression of Voltage-Gated Calcium Channel Ca _v 2.2 Induced by Truncated Constructs. Journal of Neuroscience, 2001, 21, 8495-8504.	1.7	87
101	Functional Expression and Characterization of a Voltage-Gated CaV1.3 (α1D) Calcium Channel Subunit from an Insulin-Secreting Cell Line. Molecular Endocrinology, 2001, 15, 1211-1221.	3.7	68
102	Functional Expression and Characterization of a Voltage-Gated CaV1.3 (Â1D) Calcium Channel Subunit from an Insulin-Secreting Cell Line. Molecular Endocrinology, 2001, 15, 1211-1221.	3.7	49
103	The α1B Ca 2+ channel amino terminus contributes determinants for β subunitâ€mediated voltageâ€dependent inactivation properties. Journal of Physiology, 2000, 525, 377-390.	1.3	60
104	Calcium Channel β Subunit Promotes Voltage-Dependent Modulation of α1B by Cβγ. Biophysical Journal, 2000, 79, 731-746.	0.2	91
105	Overlapping selectivity of neurotoxin and dihydropyridine calcium channel blockers in cerebellar granule neurones. Neuropharmacology, 2000, 39, 1740-1755.	2.0	21
106	Identification of Residues in the N Terminus of α1B Critical for Inhibition of the Voltage-Dependent Calcium Channel by Gβγ. Journal of Neuroscience, 1999, 19, 6855-6864.	1.7	109
107	The effect of α2-δ and other accessory subunits on expression and properties of the calcium channel α1G. Journal of Physiology, 1999, 519, 35-45.	1.3	113
108	Differential plasma membrane targeting of voltage-dependent calcium channel subunits expressed in a polarized epithelial cell line. Journal of Physiology, 1999, 515, 685-694.	1.3	45

ANNETTE C DOLPHIN

#	Article	IF	CITATIONS
109	Dissection of the Calcium Channel Domains Responsible for Modulation of Neuronal Voltage-Dependent Calcium Channels by G Proteins. Annals of the New York Academy of Sciences, 1999, 868, 160-174.	1.8	11
110	Modelling of a voltage-dependent Ca2+channel β subunit as a basis for understanding its functional properties. FEBS Letters, 1999, 445, 366-370.	1.3	114
111	7 L-Type calcium channel modulation. Advances in Second Messenger and Phosphoprotein Research, 1999, 33, 153-177.	4.5	40
112	Mechanisms of modulation of voltage-dependent calcium channels by G proteins. Journal of Physiology, 1998, 506, 3-11.	1.3	245
113	Facilitation of rabbit α1Bcalcium channels: involvement of endogenous Gβγ subunits. Journal of Physiology, 1998, 509, 15-27.	1.3	34
114	Role of domain I of neuronal Ca2+channel α1 subunits in G protein modulation. Journal of Physiology, 1998, 509, 163-169.	1.3	33
115	The effect of overexpression of auxiliary Ca2+channel subunits on native Ca2+channel currents in undifferentiated mammalian NG108-15 cells. Journal of Physiology, 1998, 510, 347-360.	1.3	39
116	Known Calcium Channel Î ± 1 Subunits Can Form Low Threshold Small Conductance Channels with Similarities to Native T-Type Channels. Neuron, 1998, 20, 341-351.	3.8	77
117	Identification of the Amino Terminus of Neuronal Ca ²⁺ Channel α1 Subunits α1B and α1E as an Essential Determinant of G-Protein Modulation. Journal of Neuroscience, 1998, 18, 4815-4824.	1.7	110
118	The Intracellular Loop between Domains I and II of the B-Type Calcium Channel Confers Aspects of G-Protein Sensitivity to the E-Type Calcium Channel. Journal of Neuroscience, 1997, 17, 1330-1338.	1.7	94
119	Properties of Cloned Rat α1A Calcium Channels Transiently Expressed in the COS-7 Cell Line. European Journal of Neuroscience, 1997, 9, 739-748.	1.2	50
120	Importance of the Different β Subunits in the Membrane Expression of the α1A and α2 Calcium Channel Subunits: Studies Using a Depolarization-sensitive α1A Antibody. European Journal of Neuroscience, 1997, 9, 749-759.	1.2	134
121	Functional expression of rat brain cloned α1E calcium channels in COS-7 cells. Pflugers Archiv European Journal of Physiology, 1997, 433, 523-532.	1.3	90
122	Facilitation of Ca2+ current in excitable cells. Trends in Neurosciences, 1996, 19, 35-43.	4.2	185
123	Anti-Ig-induced Calcium Influx in Rat B Lymphocytes Mediated by cGMP through a Dihydropyridine-sensitive Channel. Journal of Biological Chemistry, 1996, 271, 7297-7300.	1.6	99
124	P21-ras is involved in regulation of voltage-dependent calcium channels in cultured rat dorsal root ganglion cells. Biochemical Society Transactions, 1995, 23, 193S-193S.	1.6	3
125	Use of site-directed antibodies to probe the topography of theα2subunit of voltage-gated Ca2+channels. FEBS Letters, 1995, 364, 129-133.	1.3	48
126	Voltage-dependent calcium channel β-subunits in combination withα1subunits, have a GTPase activating effect to promote the hydrolysis of GTP by Gαoin rat frontal cortex. FEBS Letters, 1995, 370, 135-140.	1.3	47

#	Article	IF	CITATIONS
127	The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation. Neuroscience, 1995, 68, 465-478.	1.1	60
128	Receptor-G Protein-Effector Coupling: Coding and Regulation of the Signal Transduction Process. , 1995, , 91-103.		2
129	Cycloheximide abolishes pertussis toxin-induced increase in glutamate release from cerebellar granule neurones. Neuroscience Letters, 1994, 166, 17-22.	1.0	8
130	Modulation of Voltageâ€Dependent Calcium Channels in Cultured Neurons ^a . Annals of the New York Academy of Sciences, 1994, 747, 325-335.	1.8	4
131	Modulation of Voltage Dependent Calcium Channels by GABAb Receptors and G Proteins in Cultured Rat Dorsal Root Ganglion Neurons: Relevance to Transmitter Release and Its Modulation. , 1994, , 47-61.		Ο
132	Go transduces GABAB-receptor modulation of N-type calcium channels in cultured dorsal root ganglion neurons. Pflugers Archiv European Journal of Physiology, 1993, 425, 335-343.	1.3	76
133	Ca2+ currents in cerebellar granule neurones: Role of internal MG2+ in altering characteristics and antagonist effects. Neuropharmacology, 1993, 32, 1171-1183.	2.0	30
134	Interactions of polyamines with neuronal ion channels. Trends in Neurosciences, 1993, 16, 153-160.	4.2	151
135	G protein localization in cultured dorsal root ganglion neurones. Biochemical Society Transactions, 1993, 21, 301-302.	1.6	1
136	G protein modulation of voltage-dependent calcium channels and transmitter release. Biochemical Society Transactions, 1993, 21, 391-395.	1.6	11
137	Cycloheximide abolishes pertussis toxin induced increase in glutamate release from cerebellar granule neurones. Biochemical Society Transactions, 1993, 21, 222S-222S.	1.6	1
138	Modulation of neuronal Ca2+-dependent currents by neurotransmitters, G-proteins and toxins. Biochemical Society Transactions, 1992, 20, 443-449.	1.6	8
139	Actions of arginine polyamine on voltage and ligandâ€activated whole cell currents recorded from cultured neurones. British Journal of Pharmacology, 1992, 106, 199-207.	2.7	50
140	Intracellular calcium regulates the survival of early sensory neurons before they become dependent on neurotrophic factors. Neuron, 1992, 9, 563-574.	3.8	78
141	G-protein mediation in nociceptive signal transduction: An investigation into the excitatory action of bradykinin in a subpopulation of cultured rat sensory neurons. Neuroscience, 1992, 49, 117-128.	1.1	57
142	The effect of phosphatase inhibitors and agents increasing cyclic-AMP-dependent phosphorylation on calcium channel currents in cultured rat dorsal root ganglion neurones: interaction with the effect of G protein activation. Pflugers Archiv European Journal of Physiology, 1992, 421, 138-145.	1.3	13
143	Regulation of calcium channel activity by GTP binding proteins and second messengers. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1091, 68-80.	1.9	69
144	G Protein Modulation of Calcium Entry and Transmitter Release. Annals of the New York Academy of Sciences, 1991, 635, 139-152.	1.8	17

ANNETTE C DOLPHIN

#	Article	IF	CITATIONS
145	Activation of Calcium Channel Currents in Rat Sensory Neurons by Large Depolarizations: Effect of Guanine Nucleotides and (-)-Baclofen. European Journal of Neuroscience, 1990, 2, 104-108.	1.2	30
146	Modulation of neuronal T-type calcium channel currents by photoactivation of intracellular guanosine 5′-0(3-thio) triphosphate. Neuroscience, 1990, 38, 285-294.	1.1	62
147	A comparison of the effect of calcium channel ligands and GABAB agonists and antagonists on transmitter release and somatic calcium channel currents in cultured neurons. Neuroscience, 1990, 38, 721-729.	1.1	81
148	G-protein regulation of neuronal voltage-activated calcium currents. General Pharmacology, 1989, 20, 715-720.	0.7	9
149	Modulation of Ca2+-Channel Currents in Sensory Neurons by Pertussis Toxin-Sensitive G-Proteins. Annals of the New York Academy of Sciences, 1989, 560, 387-390.	1.8	7
150	An investigation into the mechanisms of inhibition of calcium channel currents in cultured sensory neurones of the rat by guanine nucleotide analogues and (â^')â^' baclofen. British Journal of Pharmacology, 1989, 97, 263-273.	2.7	69
151	Interaction between calcium channel ligands and guanine nucleotides in cultured rat sensory and sympathetic neurones Journal of Physiology, 1989, 413, 271-288.	1.3	49
152	Modulation of Calcium and other Channels by G Proteins: Implications for the Control of Synaptic Transmission. , 1989, , 127-146.		1
153	Photoactivation of intracellular guanosine triphosphate analogues reduces the amplitude and slows the kinetics of voltage-activated calcium channel currents in sensory neurones. Pflugers Archiv European Journal of Physiology, 1988, 411, 628-636.	1.3	71
154	ls p21-ras a real G protein?. Trends in Neurosciences, 1988, 11, 287-291.	4.2	9
155	Nucleotide binding proteins in signal transduction and disease. Trends in Neurosciences, 1987, 10, 53-57.	4.2	125
156	Activation of a G protein promotes agonist responses to calcium channel ligands. Nature, 1987, 330, 760-762.	13.7	161
157	Inhibition of calcium currents in cultured rat dorsal root ganglion neurones by (â^)â€baclofen. British Journal of Pharmacology, 1986, 88, 213-220.	2.7	131
158	Regulation of calcium currents by a GTP analogue: Potentiation of (â^)-baclofen-mediated inhibition. Neuroscience Letters, 1986, 69, 59-64.	1.0	137
159	Calciumâ€dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue Journal of Physiology, 1986, 373, 47-61.	1.3	232
160	Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature, 1985, 316, 148-150.	13.7	246
161	Cyclic Nucleotide-Dependent Protein Kinases and Some Major Substrates in the Rat Cerebellum After Neonatal X-Irradiation. Journal of Neurochemistry, 1983, 40, 577-581.	2.1	87
162	An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neuroscience Letters, 1983, 43, 49-54.	1.0	251

#	Article	IF	CITATIONS
163	Noradrenergic modulation of glutamate release in the cerebellum. Brain Research, 1982, 252, 111-116.	1.1	60
164	What is the mechanism of long-term potentiation in the hippocampus?. Trends in Neurosciences, 1982, 5, 289-290.	4.2	79
165	Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature, 1982, 297, 496-497.	13.7	389
166	Serotonin stimulates phosphorylation of Protein I in the facial motor nucleus of rat brain. Nature, 1981, 289, 76-79.	13.7	78
167	Presence of Protein I, a Phosphoprotein Associated with Synaptic Vesicles, in Cerebellar Granule Cells. Journal of Neurochemistry, 1981, 36, 1627-1631.	2.1	13
168	Neuronal protein phosphorylation: Recent studies concerning protein I, A synapse-specific phosphoprotein. Pharmacology Biochemistry and Behavior, 1980, 13, 169-174.	1.3	4
169	Protein phosphorylation in the brain. Drug and Alcohol Dependence, 1980, 6, 57.	1.6	0
170	Genetically determined differences in noradrenergic input to the brain cortex: A histochemical and biochemical study in two inbred strains of mice. Neuroscience, 1979, 4, 877-888.	1.1	77
171	The resolution of dopamine and β1- and β2-adrenergic-sensitive adenylate cyclase activities in homogenates of cat cerebellum, hippocampus and cerebral cortex. Brain Research, 1979, 179, 305-317.	1.1	59
172	Beta-Adrenergic Receptors in C6 Glioma Cells and Central Nervous System. , 1979, , 127-136.		0
173	Direct interaction of LSD with central "beta―adrenergic receptors. Life Sciences, 1978, 22, 345-352.	2.0	11
174	Noradrenaline-sensitive adenylate cyclase in slices of mouse limbic forebrain: characterisation and effect of dopaminergic agonists. Biochemical Pharmacology, 1977, 26, 1877-1884.	2.0	16
175	Behavioural and biochemical effects of chronic reduction of cerebral noradrenaline receptor stimulation. Naunyn-Schmiedeberg's Archives of Pharmacology, 1977, 299, 167-173.	1.4	10
176	Modification of the L-DOPA reversal of reserpine akinesia by inhibitors of dopamine-β-hydroxylase. European Journal of Pharmacology, 1976, 35, 135-144.	1.7	7
177	Pharmacological evidence for cerebral dopamine receptor blockade by metoclopramide in rodents. Psychopharmacology, 1975, 41, 133-138.	1.5	78