
Louise Colville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9396211/publications.pdf Version: 2024-02-01

LOUISE COLVILLE

#	Article	IF	CITATIONS
1	The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews, 2015, 90, 31-59.	10.4	350
2	Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany, 2011, 72, 93-105.	4.2	262
3	Physical dormancy in seeds: a game of hide and seek?. New Phytologist, 2013, 198, 496-503.	7.3	98
4	Genomeâ€wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant, Cell and Environment, 2015, 38, 1011-1022.	5.7	95
5	Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regulation, 2010, 62, 241-255.	3.4	88
6	Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrantCastanea sativaseeds. Plant, Cell and Environment, 2009, 33, 59-75.	5.7	87
7	Transcriptome-Wide Mapping of Pea Seed Ageing Reveals a Pivotal Role for Genes Related to Oxidative Stress and Programmed Cell Death. PLoS ONE, 2013, 8, e78471.	2.5	74
8	Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. Journal of Experimental Botany, 2008, 59, 3857-3868.	4.8	73
9	Seed life span and food security. New Phytologist, 2019, 224, 557-562.	7.3	64
10	Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress. Journal of Experimental Botany, 2012, 63, 6519-6530.	4.8	63
11	Mathematically combined half-cell reduction potentials of low-molecular-weight thiols as markers of seed ageing. Free Radical Research, 2011, 45, 1093-1102.	3.3	37
12	A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings. Phytochemistry, 2015, 112, 130-138.	2.9	34
13	Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors. Frontiers in Plant Science, 2017, 8, 1428.	3.6	27
14	Wheat seed ageing viewed through the cellular redox environment and changes in pH. Free Radical Research, 2019, 53, 641-654.	3.3	23
15	Seed selection by earthworms: chemical seed properties matter more than morphological traits. Plant and Soil, 2017, 413, 97-110.	3.7	18
16	The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis , through cold pretreatment and modulation of the ascorbate and glutathione pools. Plant Physiology and Biochemistry, 2014, 84, 96-104.	5.8	16
17	Monitoring of oxidative status in three native Australian species during cold acclimation and cryopreservation. Plant Cell Reports, 2017, 36, 1903-1916.	5.6	15
18	Synergy of production of value-added bioplastic, astaxanthin and phycobilin co-products and Direct Green 6 textile dye remediation in Spirulina platensis. Chemosphere, 2021, 280, 130920.	8.2	12

LOUISE COLVILLE

#	Article	IF	CITATIONS
19	The distribution of glutathione and homoglutathione in leaf, root and seed tissue of 73 species across the three sub-families of the Leguminosae. Phytochemistry, 2015, 115, 175-183.	2.9	10
20	Seed viability and fatty acid profiles of five orchid species before and after ageing. Plant Biology, 2022, 24, 168-175.	3.8	10
21	Volatile signature indicates viability of dormant orthodox seeds. Physiologia Plantarum, 2021, 173, 788-804.	5.2	8
22	Development of a reliable GC-MS method for fatty acid profiling using direct transesterification of minimal quantities of microscopic orchid seeds. Seed Science Research, 2016, 26, 84-91.	1.7	7
23	Gaseous environment modulates volatile emission and viability loss during seed artificial ageing. Planta, 2021, 253, 106.	3.2	7
24	The crypsis hypothesis explained: a reply to Jayasuriya et al. (2015). Seed Science Research, 2015, 25, 402-408.	1.7	6
25	Elemental localisation and a reduced glutathione redox state protect seeds of the halophyte Suaeda maritima from salinity during over-wintering and germination. Environmental and Experimental Botany, 2021, 190, 104569.	4.2	6
26	The influence of organic and inorganic chelators on the toxicity of bulk and nanoparticles of zinc oxide during germination and seedling growth of <i>Nicotiana tabacum</i> L Plant Biosystems, 2019, 153, 436-449.	1.6	4
27	Comparative analyses of extreme dry seed thermotolerance in five Cactaceae species. Environmental and Experimental Botany, 2021, 188, 104514.	4.2	4