
Christopher R Burns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9395836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch*. Astrophysical Journal, 2019, 882, 34.	1.6	510
2	THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE. Astronomical Journal, 2010, 139, 120-144.	1.9	290
3	THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE. Astronomical Journal, 2010, 139, 519-539.	1.9	279
4	THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy. Astronomical Journal, 2011, 141, 19.	1.9	218
5	ON THE SOURCE OF THE DUST EXTINCTION IN TYPE Ia SUPERNOVAE AND THE DISCOVERY OF ANOMALOUSLY STRONG Na I ABSORPTION. Astrophysical Journal, 2013, 779, 38.	1.6	202
6	THE CARNEGIE SUPERNOVA PROJECT: INTRINSIC COLORS OF TYPE Ia SUPERNOVAE. Astrophysical Journal, 2014, 789, 32.	1.6	181
7	The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions. Astronomical Journal, 2017, 154, 211.	1.9	133
8	SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT. Astrophysical Journal, 2013, 773, 53.	1.6	122
9	The Carnegie Supernova Project: Absolute Calibration and the Hubble Constant. Astrophysical Journal, 2018, 869, 56.	1.6	122
10	THE HE-RICH CORE-COLLAPSE SUPERNOVA 2007Y: OBSERVATIONS FROM X-RAY TO RADIO WAVELENGTHS. Astrophysical Journal, 2009, 696, 713-728.	1.6	100
11	THE CARNEGIE SUPERNOVA PROJECT: FIRST NEAR-INFRARED HUBBLE DIAGRAM TO <i>z</i> à ¹ /4 0.7. Astrophysical Journal, 2009, 704, 1036-1058.	1.6	99
12	A NEW DISTANCE TO THE ANTENNAE GALAXIES (NGC 4038/39) BASED ON THE TYPE Ia SUPERNOVA 2007sr. Astronomical Journal, 2008, 136, 1482-1489.	1.9	98
13	LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS. Astrophysical Journal, 2012, 752, 101.	1.6	79
14	Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations. Astrophysical Journal, 2017, 846, 58.	1.6	75
15	THE DISTANCE TO NGC 1316 (FORNAX A) FROM OBSERVATIONS OF FOUR TYPE Ia SUPERNOVAE. Astronomical Journal, 2010, 140, 2036-2051.	1.9	71
16	UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE. Astrophysical Journal, 2012, 745, 74.	1.6	69
17	The Standardizability of TypeÂla Supernovae in the Near-Infrared: Evidence for a Peak-Luminosity Versus Decline-Rate Relation in the Near-Infrared. Publications of the Astronomical Society of the Pacific, 2012, 124, 114-127.	1.0	61
18	EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82. Astrophysical Journal, 2015, 798, 39.	1.6	60

CHRISTOPHER R BURNS

#	Article	IF	CITATIONS
19	Carnegie Supernova Project-II: Extending the Near-infrared Hubble Diagram for Type Ia Supernovae to <i>z</i> â^1⁄4 0.1. Publications of the Astronomical Society of the Pacific, 2019, 131, 014001.	1.0	56
20	Red versus Blue: Early Observations of Thermonuclear Supernovae Reveal Two Distinct Populations?. Astrophysical Journal Letters, 2018, 864, L35.	3.0	49
21	SN 2012fr: Ultraviolet, Optical, and Near-infrared Light Curves of a Type Ia Supernova Observed within a Day of Explosion*. Astrophysical Journal, 2018, 859, 24.	1.6	48
22	The Carnegie Supernova Project-I: Correlation between Type Ia Supernovae and Their Host Galaxies from Optical to Near-infrared Bands*. Astrophysical Journal, 2020, 901, 143.	1.6	42
23	A <i>HUBBLE</i> DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD. Astrophysical Journal, 2015, 815, 121.	1.6	37
24	SN 2013aa and SN 2017cbv: Two Sibling Type Ia Supernovae in the Spiral Galaxy NGC 5643. Astrophysical Journal, 2020, 895, 118.	1.6	26
25	Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State. Astrophysical Journal, 2022, 933, 172.	1.6	25
26	Carnegie Supernova Project II: The Slowest Rising Type Ia Supernova LSQ14fmg and Clues to the Origin of Super-Chandrasekhar/03fg-like Events*. Astrophysical Journal, 2020, 900, 140.	1.6	24
27	A Speed Bump: SN 2021aefx Shows that Doppler Shift Alone Can Explain Early Excess Blue Flux in Some Type Ia Supernovae. Astrophysical Journal Letters, 2022, 932, L2.	3.0	22
28	THE ABSOLUTE MAGNITUDE OF RRc VARIABLES FROM STATISTICAL PARALLAX. Astrophysical Journal, 2013, 775, 57.	1.6	20
29	Carnegie Supernova Project: The First Homogeneous Sample of Super-Chandrasekhar-mass/2003fg-like Type Ia Supernovae. Astrophysical Journal, 2021, 922, 205.	1.6	18
30	Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-envelope Core-collapse Supernovae*. Astrophysical Journal, 2022, 925, 175.	1.6	17
31	Carnegie Supernova Project-II: Near-infrared Spectroscopic Diversity of Type II Supernovae. Astrophysical Journal, 2019, 887, 4.	1.6	16
32	The Distance to the Draco Intermediate-Velocity Cloud. Astrophysical Journal, 1998, 507, L161-L164.	1.6	16
33	Observations of the very young Type Ia Supernova 2019np with early-excess emission. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3541-3558.	1.6	15
34	LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2208-2228.	1.6	12
35	Carnegie Supernova Project: Classification of Type la Supernovae. Astrophysical Journal, 2020, 901, 154.	1.6	12
36	Optical and Near-infrared Observations of the Nearby SN Ia 2017cbv. Astrophysical Journal, 2020, 904, 14.	1.6	12

Christopher R Burns

#	Article	IF	CITATIONS
37	Measuring an Off-center Detonation through Infrared Line Profiles: The Peculiar Type Ia Supernova SN 2020qxp/ASASSN-20jq. Astrophysical Journal, 2021, 922, 186.	1.6	12
38	Theoretical Modeling of Weakly Lensed Polarized Radio Sources. Astrophysical Journal, 2004, 613, 672-681.	1.6	11
39	ASASSN-15hy: An Underluminous, Red 03fg-like Type Ia Supernova. Astrophysical Journal, 2021, 920, 107.	1.6	11
40	Strong Near-infrared Carbon Absorption in the Transitional Type Ia SN 2015bp*. Astrophysical Journal, 2021, 914, 57.	1.6	9
41	Type II supernovae from the Carnegie Supernova Project-I. Astronomy and Astrophysics, 2022, 660, A40.	2.1	9
42	SN 2012ij: A Low-luminosity Type Ia Supernova and Evidence for a Continuous Distribution from a 91bg-like Explosion to Normal Ones*. Astrophysical Journal, 2022, 927, 142.	1.6	7
43	A Tale of Two Type Ia Supernovae: The Fast-declining Siblings SNe 2015bo and 1997cn. Astrophysical Journal, 2022, 928, 103.	1.6	7
44	The Peak Luminosity–Decline Rate Relationship for Type Ia Supernovae. , 2017, , 2543-2561.		3
45	Investigating the Unusual Spectroscopic Time Evolution in SN 2012fr ^{â^—} . Astrophysical Journal, 2018, 869, 162.	1.6	3
46	Blast from the past: constraining progenitor models of SN 1972E. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3649-3662.	1.6	3
47	The Dependence of the Type Ia Supernova Host Bias on Observation or Fitting Technique. Astrophysical Journal, 2022, 925, 115.	1.6	3
48	The Peak Luminosity–Decline Rate Relationship for Type Ia Supernovae. , 2016, , 1-19.		2
49	The DDO IVC Distance Project: Survey Description and the Distance to G139.6+47.6. Astronomical Journal, 2003, 125, 2584-2589.	1.9	Ο