Hongjun Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9395775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bifurcation analysis of a discrete-time ratio-dependent predator–prey model with Allee Effect. Communications in Nonlinear Science and Numerical Simulation, 2016, 38, 288-302.	3.3	76
2	Bifurcation and chaos in a discrete-time predator–prey system of Holling and Leslie type. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 702-715.	3.3	56
3	Bursting regimes in map-based neuron models coupled through fast threshold modulation. Physical Review E, 2008, 77, 051918.	2.1	51
4	Stability and synchronization of coupled Rulkov map-based neurons with chemical synapses. Communications in Nonlinear Science and Numerical Simulation, 2016, 35, 105-122.	3.3	30
5	Stability and chaos of Rulkov map-based neuron network with electrical synapse. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 536-545.	3.3	25
6	Complete synchronization of coupled Rulkov neuron networks. Nonlinear Dynamics, 2016, 84, 2423-2434.	5.2	24
7	A mechanism for elliptic-like bursting and synchronization of bursts in a map-based neuron network. Cognitive Processing, 2009, 10, 23-31.	1.4	23
8	Parameter space of the Rulkov chaotic neuron model. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 2060-2070.	3.3	23
9	Two-parameter bifurcation analysis of limit cycles of a simplified railway wheelset model. Nonlinear Dynamics, 2018, 93, 2415-2431.	5.2	19
10	Hybrid discrete-time neural networks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 5071-5086.	3.4	15
11	BURSTING TYPES AND STABLE DOMAINS OF RULKOV NEURON NETWORK WITH MEAN FIELD COUPLING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1330041.	1.7	15
12	Two-parameter bifurcation analysis of an aircraft nose landing gear model. Nonlinear Dynamics, 2021, 103, 367-381.	5.2	14
13	Synchronization of two identical and non-identical Rulkov models. Communications in Nonlinear Science and Numerical Simulation, 2016, 40, 15-27.	3.3	13
14	Synchronization of Rulkov neuron networks coupled by excitatory and inhibitory chemical synapses. Chaos, 2019, 29, 023129.	2.5	13
15	Synchronization Dynamics of Two Heterogeneous Chaotic Rulkov Neurons with Electrical Synapses. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730009.	1.7	11
16	Bifurcation of a modified railway wheelset model with nonlinear equivalent conicity and wheel–rail force. Nonlinear Dynamics, 2020, 102, 79-100.	5.2	11
17	Bifurcations and chaos of a delayed ecological model. Chaos, Solitons and Fractals, 2007, 33, 1383-1393.	5.1	10
18	Necessary Conditions for Complete Synchronization of a Coupled Chaotic Aihara Neuron Network with Electrical Synapses. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950063.	1.7	9

Hongjun Cao

#	Article	IF	CITATIONS
19	Integral Step Size Makes a Difference to Bifurcations of a Discrete-Time Hindmarsh–Rose Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550029.	1.7	8
20	A Simplified Optimal Control Method for Homoclinic Bifurcations. Nonlinear Dynamics, 2005, 42, 43-61.	5.2	7
21	Bifurcations of periodic orbits in Duffing equation with periodic damping and external excitations. Nonlinear Dynamics, 2012, 70, 453-462.	5.2	4
22	Intermittent evolution routes to the periodic or the chaotic orbits in Rulkov map. Chaos, 2021, 31, 093119.	2.5	4
23	Different characteristics and important channels between the healthy brain network and the epileptic brain network based on EEG data. Communications in Nonlinear Science and Numerical Simulation, 2019, 66, 147-155.	3.3	3
24	Hopf–Hopf bifurcation analysis based on resonance and non-resonance in a simplified railway wheelset model. Nonlinear Dynamics, 2022, 108, 1197-1215.	5.2	3
25	Map-based neuron networks. AIP Conference Proceedings, 2007, , .	0.4	2
26	EFFECT OF STEP SIZE ON BIFURCATIONS AND CHAOS OF A MAP-BASED BVP OSCILLATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1789-1795.	1.7	2
27	One of signatures of a memristor. Communications in Nonlinear Science and Numerical Simulation, 2016, 30, 128-138.	3.3	2
28	Effect of Higher Order Terms on the Bifurcation Structure of Coupled Rulkov Neurons. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750178.	1.7	1
29	Chaos in the Rulkov Neuron Model Based on Marotto's Theorem. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	1.7	1