Ernst Z Kurmaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9395751/publications.pdf

Version: 2024-02-01

441 papers

8,195 citations

71102 41 h-index 106344 65 g-index

444 all docs

444
docs citations

444 times ranked 10188 citing authors

#	Article	lF	CITATIONS
1	Mn3sexchange splitting in mixed-valence manganites. Physical Review B, 2002, 65, .	3.2	499
2	Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 1211-1218.	4.6	216
3	Oxygen x-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides. Physical Review B, 2008, 77, .	3.2	139
4	Local moments in Mn-based Heusler alloys and their electronic structures. Physical Review B, 1999, 60, 6428-6438.	3.2	130
5	Oxygen-vacancy-induced ferromagnetism in undoped SnO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> thin films. Physical Review B, 2012, 85, .	3.2	124
6	Electronic structure of titanium monoxide. Physical Review B, 1997, 56, 10656-10667.	3.2	107
7	Valence-band spectra and electronic structure of CuFeO2. Physical Review B, 1997, 56, 4584-4591.	3.2	105
8	Effect of Co and O defects on the magnetism in Co-doped ZnO: Experiment and theory. Physical Review B, 2007, 75, .	3.2	99
9	Photoemission study of the metal-insulator transition inCulr2S4. Physical Review B, 1997, 55, R15979-R15982.	3.2	88
10	Light or Heat: What Is Killing Lead Halide Perovskites under Solar Cell Operation Conditions?. Journal of Physical Chemistry Letters, 2020, 11, 333-339.	4.6	85
11	Band-structure description of Mott insulators (NiO, MnO, FeO, CoO). Journal of Physics Condensed Matter, 1990, 2, 3973-3987.	1.8	81
12	Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 22596-22603.	10.3	80
13	Band gaps and electronic structure of alkaline-earth and post-transition-metal oxides. Physical Review B, 2010, 81, .	3.2	78
14	Epoxide Speciation and Functional Group Distribution in Graphene Oxide Paper‣ike Materials. Advanced Functional Materials, 2012, 22, 3950-3957.	14.9	73
15	FeAs systems: a new class of high-temperature superconductors. Physics-Uspekhi, 2008, 51, 1261-1286.	2.2	70
16	The Metallic Nature of Epitaxial Silicene Monolayers on Ag(111). Advanced Functional Materials, 2014, 24, 5253-5259.	14.9	69
17	High-Energy and High-Power-Density Potassium Ion Batteries Using Dihydrophenazine-Based Polymer as Active Cathode Material. Journal of Physical Chemistry Letters, 2019, 10, 5440-5445.	4.6	68

Electronic structure of Electronic structure of mailto://www.w3.org/1998/Math/MathML">math://www.w3.org/1998/Math/MathML"
display="inline"> Bi/mml:mtext> M/mml:mi> O/madz mtext> <a href="

#	Article	IF	CITATIONS
19	Degree of covalency of LiCoO2: X-ray emission and photoelectron study. Solid State Communications, 1996, 99, 221-224.	1.9	63
20	Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory. Applied Surface Science, 2018, 436, 697-707.	6.1	63
21	Valence Band Structure and X-ray Spectra of Oxygen-Deficient Ferrites SrFeO _{<i>x</i>} . Journal of Physical Chemistry C, 2010, 114, 5154-5159.	3.1	59
22	Electronic structure of studied by x-ray photoelectron and x-ray emission spectroscopies. Journal of Physics Condensed Matter, 1998, 10, 4081-4091.	1.8	56
23	Band gap engineering of graphene oxide by chemical modification. Carbon, 2014, 75, 366-371.	10.3	56
24	Reversible Pb ²⁺ /Pb ⁰ and I ^{â^'} /I ₃ ^{â^'} Redox Chemistry Drives the Lightâ€Induced Phase Segregation in Allâ€Inorganic Mixed Halide Perovskites. Advanced Energy Materials, 2021, 11, 2002934.	19.5	56
25	Electronic Structure of the Nucleobases. Journal of Physical Chemistry B, 2005, 109, 7749-7757.	2.6	55
26	Appearance of Ferromagnetism in Co-Doped CeO ₂ Diluted Magnetic Semiconductors Prepared by Solid-State Reaction. Journal of Physical Chemistry C, 2011, 115, 1556-1560.	3.1	55
27	Electronic structure ofCoxTiSe2andCrxTiSe2. Physical Review B, 2001, 63, .	3.2	53
28	Nickel(II) and Copper(II) Coordination Polymers Derived from 1,2,4,5-Tetraaminobenzene for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 5197-5205.	6.7	52
29	The L2:L3 intensity ratio in soft X-ray emission spectra of 3d-metals. Journal of Electron Spectroscopy and Related Phenomena, 2005, 148, 1-4.	1.7	51
30	Characterization of Carbon-Encapsulated Nickel and Iron Nanoparticles by Means of X-ray Absorption and Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 22413-22416.	3.1	51
31	Metal-insulator transition in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>NiS</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>w>&_aml:r</td><td>nn5@</td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	w>& _a ml:r	nn 5 @
32	Structural and Band Gap Investigation of GaN:ZnO Heterojunction Solid Solution Photocatalyst Probed by Soft X-ray Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 7694-7700.	3.1	50
33	XPS spectra as a tool for studying photochemical and thermal degradation in APbX3 hybrid halide perovskites. Nano Energy, 2021, 79, 105421.	16.0	50
34	Experimental and theoretical investigation of the electronic structure of transition metal sulphides: CuS, and. Journal of Physics Condensed Matter, 1998, 10, 1687-1697.	1.8	49
35	Valence states of copper ions and electronic structure ofLiCu2O2. Physical Review B, 1998, 57, 4377-4381.	3.2	48
36	Efficient and Stable MAPbI ₃ -Based Perovskite Solar Cells Using Polyvinylcarbazole Passivation. Journal of Physical Chemistry Letters, 2020, 11, 6772-6778.	4.6	48

#	Article	IF	Citations
37	XPS study of interactions between linear carbon chains and colloidal Au nanoparticles. Mendeleev Communications, 2020, 30, 285-287.	1.6	48
38	Band Gap Tuning in Poly(triazine imide), a Nonmetallic Photocatalyst. Journal of Physical Chemistry C, 2013, 117, 8806-8812.	3.1	47
39	Origin of magnetic circular dichroism in soft x-ray fluorescence of Heusler alloys at threshold excitation. Physical Review B, 2001, 63, .	3.2	46
40	The characterization of Co-nanoparticles supported on graphene. RSC Advances, 2015, 5, 75600-75606.	3. 6	46
41	Intrinsic thermal decomposition pathways of lead halide perovskites APbX3. Solar Energy Materials and Solar Cells, 2020, 213, 110559.	6.2	45
42	Interlayer conduction band states in graphite-sulfur composites. Physical Review B, 2002, 66, .	3.2	43
43	Band approach to the excitation-energy dependence of x-ray fluorescence of TiO2. Physical Review B, 1999, 60, 2212-2217.	3.2	42
44	Electronic structure and bonding in vitamin B12, cyanocobalamin. Computational and Theoretical Chemistry, 2003, 622, 221-227.	1.5	42
45	Surface characterisation and corrosion behaviour of niobium treated in a Ca- and P-containing solution under sparking conditions. Electrochimica Acta, 2016, 198, 91-103.	5.2	42
46	Electronic structure of aMn12molecular magnet: Theory and experiment. Physical Review B, 2007, 75, .	3.2	41
47	X-ray spectra and electronic structures of the Iron arsenide superconductors <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mtext>FeAsO</mml:mtext><td>t><td>nrow><mml:m< td=""></mml:m<></td></td></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>	t> <td>nrow><mml:m< td=""></mml:m<></td>	nrow> <mml:m< td=""></mml:m<>

#	Article	IF	CITATIONS
55	Electronic structure and chemical bonding in nonstoichiometric compounds of refractory transition metals of the IVa and Va subgroups. Journal of the Less Common Metals, 1981, 78, 1-17.	0.8	37
56	Electronic structure ofMgB2: X-ray emission and absorption studies. Physical Review B, 2002, 65, .	3.2	36
57	Comparative Intrinsic Thermal and Photochemical Stability of Sn(II) Complex Halides as Next-Generation Materials for Lead-Free Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 26862-26869.	3.1	36
58	Electronic structure of niobium oxides. Journal of Alloys and Compounds, 2002, 347, 213-218.	5.5	35
59	Effect of 3d doping on the electronic structure of BaFe ₂ As ₂ . Journal of Physics Condensed Matter, 2012, 24, 215501.	1.8	35
60	Sn-loss effect in a Sn-implanted a-SiO2 host-matrix after thermal annealing: A combined XPS, PL, and DFT study. Applied Surface Science, 2016, 367, 320-326.	6.1	35
61	New tetraazapentacene-based redox-active material as a promising high-capacity organic cathode for lithium and potassium batteries. Journal of Power Sources, 2019, 435, 226724.	7.8	35
62	Unravelling the Material Composition Effects on the Gamma Ray Stability of Lead Halide Perovskite Solar Cells: MAPbI ₃ Breaks the Records. Journal of Physical Chemistry Letters, 2020, 11, 2630-2636.	4.6	35
63	Unraveling the Impact of Hole Transport Materials on Photostability of Perovskite Films and p–i–n Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19161-19173.	8.0	35
64	Half-metallic electronic structure of CrO2 in resonant scattering. Physical Review B, 2003, 67, .	3.2	34
65	High-Tc Superconductors Based on FeAs Compounds. Springer Series in Materials Science, 2010, , .	0.6	34
66	Effect of post-annealing in air on optical and XPS spectra of Y2O3 ceramics doped with CeO2. Mendeleev Communications, 2019, 29, 102-104.	1.6	34
67	X-ray emission spectra of carbon materials. Carbon, 1986, 24, 249-253.	10.3	33
68	Studies of Solid Interfaces Using Soft X-ray Emission Spectroscopy. Critical Reviews in Solid State and Materials Sciences, 1998, 23, 65-203.	12.3	33
69	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>p</mml:mi><mml:mo>â^'</mml:mo><mml:mi>p</mml:mi>in carbon-doped In<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow< td=""><td>>3.2</td><td>ath>coupling 33</td></mml:mrow<></mml:msub></mml:math></mml:mrow>	>3.2	ath>coupling 33
70	Surface characterisation of Ti–15Mo alloy modified by a PEO process in various suspensions. Materials Science and Engineering C, 2014, 39, 259-272.	7.3	33
71	X-ray emission spectra and electronic structure of amorphous silicon. Journal of Non-Crystalline Solids, 1985, 70, 187-198.	3.1	32
72	Soft X-ray emission spectroscopy of early transition metal compounds. Journal of Electron Spectroscopy and Related Phenomena, 1998, 92, 197-205.	1.7	32

#	Article	IF	CITATIONS
73	Effect of Co doping on the electronic structure of MgCNi3. Physical Review B, 2002, 66, .	3.2	32
74	Materials with strong electron correlations. Physics-Uspekhi, 2008, 51, 23-56.	2.2	32
75	Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo< td=""><td></td><td></td></mml:mo<></mml:mrow></mml:math>		

#	Article	IF	Citations
91	Electronic structure of Sr2RuO4: X-ray fluorescence emission study. Physical Review B, 1998, 57, 1558-1562.	3.2	28
92	Effects of NH3, O2, and N2 co-implantation on Cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene. Applied Surface Science, 2007, 253, 8981-8985.	6.1	28
93	XPS and DFT study of Sn incorporation into ZnO and TiO ₂ host matrices by pulsed ion implantation. Physica Status Solidi (B): Basic Research, 2015, 252, 1890-1896.	1.5	28
94	Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO 2 -host by Pb-implantation: XPS-and-DFT characterization. Applied Surface Science, 2017, 400, 110-117.	6.1	28
95	Contribution of <a <a="" and="" fermi="" href="mailto:mml:mtext" level="" of="" property="" the="">mml:mtext /mml:mtext> mml:mtext /mml:mtext> mml:mtext /mml:mtext> mml:mtext /mml:mtext> mml:mtextmml:mtext /mml:mtext> /mml:mtext> mml:mtext /mml:mtext> /mml:mtext> mml:mtext /mml:mtext> mml:mtextmml:mtext /mml:mtext>mml:mtext /mml:mtext>mml:mtextmtextmtextmtextmtextmtextmtextmtextmtext<a< td=""><td>3.2</td><td>27</td></a<>	3.2	27
96	Carbon States in Carbon-Encapsulated Nickel Nanoparticles Studied by Means of X-ray Absorption, Emission, and Photoelectron Spectroscopies. Journal of Physical Chemistry C, 2011, 115, 24615-24620.	3.1	27
97	Electronic valence band structure of high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1991, 177, 8-16.	1.2	26
98	Electronic structure of alkali-metal-dopedM8Si46(M=Na,K)clathrates. Physical Review B, 2002, 65, .	3.2	26
99	The electronic structure and chemical bonding of vitamin B 12. Europhysics Letters, 2003, 62, 582-587.	2.0	26
100	Electronic structure and thermoelectric properties of skutterudite compounds. Journal of Physics Condensed Matter, 2004, 16, 979-987.	1.8	26
101	Study of the Structural Characteristics of 3d Metals Cr, Mn, Fe, Co, Ni, and Cu Implanted in ZnO and TiO ₂ â€"Experiment and Theory. Journal of Physical Chemistry C, 2014, 118, 28143-28151.	3.1	26
102	Valence states of titanium atoms in non-stoichiometric carbides: X-ray emission spectra and cluster calculations. Journal of Physics C: Solid State Physics, 1981, 14, 5567-5574.	1.5	25
103	X-ray emission and photoelectron spectra of PrO.5 SrO.5 MnO3. Physical Review B, 1999, 59, 12799-12806.	3.2	24
104	Observation of fluorapatite formation under hydrolysis of tetracalcium phosphate in the presence of KF by means of soft X-ray emission and absorption spectroscopy. Journal of Materials Science: Materials in Medicine, 2002, 13, 33-36.	3.6	24
105	An insight into the origin of room-temperature ferromagnetism in SnO ₂ and Mn-doped SnO ₂ quantum dots: an experimental and DFT approach. Physical Chemistry Chemical Physics, 2018, 20, 6500-6514.	2.8	24
106	DC plasma electrolytic oxidation treatment of gum metal for dental implants. Electrochimica Acta, 2019, 302, 10-20.	5.2	24
107	Electronic structure of LiMnO: X-ray emission and photoelectron spectra and band structure calculations. European Physical Journal B, 2000, 14, 281-286.	1.5	23
108	X-ray Ce LIII absorption in CeO2 and BaCeO3: experiment and interpretation on the basis of LMTO band structure calculations. Materials Letters, 1992, 14, 115-118.	2.6	22

#	Article	IF	Citations
109	Soft X-ray emission CuL spectra and copper-oxygen bond covalency in high-Tc superconductors. Solid State Communications, 1992, 81, 1003-1007.	1.9	22
110	Mechanism for interfacial adhesion strength of an ion beam mixed Cu/polyimide with a thin buffer layer. Applied Physics Letters, 1999, 74, 522-524.	3.3	22
111	Chemical Bonding and Hybridization in 5 <i>p</i> Binary Oxide. Journal of Physical Chemistry C, 2012, 116, 24248-24254.	3.1	22
112	Impact of charge transport layers on the photochemical stability of MAPbl ₃ in thin films and perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 2705-2716.	4.9	22
113	Film Deposition Techniques Impact the Defect Density and Photostability of MAPbI ₃ Perovskite Films. Journal of Physical Chemistry C, 2020, 124, 21378-21385.	3.1	22
114	X-ray photoemission spectra of valence electrons in V3X and Nb3X compounds. Solid State Communications, 1977, 21, 239-243.	1.9	21
115	Interpretation of ESCA spectra for non-stoichiometric titanium carbides on the basis of MOâ€"LCAO calculations. Journal of Electron Spectroscopy and Related Phenomena, 1979, 16, 415-422.	1.7	21
116	Synthesis, structure, and XPS characterization of the stoichiometric phaseSr2CuO2F2. Physical Review B, 1997, 56, 2831-2835.	3.2	21
117	Electronic structure of the molecule-based magnetMn[N(CN)2]2from theory and experiment. Physical Review B, 2002, 66, .	3.2	21
118	Dependence of DNA Electronic Structure on Environmental and Structural Variations. Journal of Physical Chemistry B, 2006, 110, 15742-15748.	2.6	21
119	Spectroscopic characterization of a multiband complex oxide: Insulating and conducting cement 12CaO·7Al2O3. Physical Review B, 2012, 85, .	3.2	21
120	Electronic structure and magnetic properties of graphene/Co composite. Carbon, 2015, 91, 298-303.	10.3	21
121	Tuning the electronic structure of graphene through nitrogen doping: experiment and theory. RSC Advances, 2016, 6, 56721-56727.	3.6	21
122	Electronic structure and experimental spectra of some rare-earth oxyfluorides. Journal of Electron Spectroscopy and Related Phenomena, 1980, 21, 193-204.	1.7	20
123	Analysis of fluorine incorporation into YBa2Cu3O6.5+ \hat{l} by means of X-ray emission spectroscopy. Physica C: Superconductivity and Its Applications, 1994, 221, 71-75.	1.2	20
124	X-ray emission, photoelectron spectra, and electronic structure of Sr2CuO2F2+δ. Physical Review B, 1995, 52, 2390-2394.	3.2	20
125	Modification of titanium and titanium dioxide surfaces by ion implantation: Combined XPS and DFT study. Physica Status Solidi (B): Basic Research, 2015, 252, 748-754.	1.5	20
126	Electronic structure and photoluminescence properties of Zn-ion implanted silica glass before and after thermal annealing. Journal of Non-Crystalline Solids, 2016, 432, 183-188.	3.1	20

#	Article	IF	Citations
127	A nickel coordination polymer derived from 1,2,4,5-tetraaminobenzene for fast and stable potassium battery anodes. Chemical Communications, 2020, 56, 1541-1544.	4.1	20
128	X-ray ultrasoft spectra of vanadium in vanadium oxides. Journal of Solid State Chemistry, 1977, 22, 217-220.	2.9	19
129	Analysis of 13C NMR Chemical Shielding and XPS for Cellulose and Chitosan by DFT Calculations Using the Model Molecules. Polymer Journal, 2005, 37, 21-29.	2.7	19
130	Clustering of impurity atoms in Co-doped anatase TiO2thin films probed with soft x-ray fluorescence. Journal of Physics Condensed Matter, 2006, 18, 4243-4251.	1.8	19
131	Modulation of the band gap of graphene oxide: The role of AA-stacking. Carbon, 2014, 66, 539-546.	10.3	19
132	Octahedral conversion of a-SiO ₂ host matrix by pulsed ion implantation. Physica Status Solidi (B): Basic Research, 2015, 252, 2185-2190.	1.5	19
133	Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies. Applied Surface Science, 2018, 441, 978-983.	6.1	19
134	Valence band spectra of 4d and 5d silicides. Journal of Physics Condensed Matter, 1997, 9, 9403-9414.	1.8	18
135	Analysis of Electron Spectra of Carbon Allotropes (Diamond, Graphite, Fullerene) by Density Functional Theory Calculations Using the Model Molecules. Journal of Physical Chemistry A, 2003, 107, 9403-9408. Predicting the band gap of ternary oxides containing 3 mml:math	2.5	18
136	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup><mml:mi>d</mml:mi><mml:mn>10</mml:mn></mml:msup> and 3 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msup><mml:mi>d</mml:mi><mml:mn>0</mml:mn></mml:msup></mml:math> metals.	3.2	18
137	Physical Review B, 2012, 86, . Atomic and electronic structure of a copper/graphene interface as prepared and 1.5 years after. Applied Surface Science, 2017, 426, 1167-1172.	6.1	18
138	Influence of Ion Migration from ITO and SiO ₂ Substrates on Photo and Thermal Stability of CH ₃ NH ₃ SnI ₃ Hybrid Perovskite. Journal of Physical Chemistry C, 2020, 124, 14928-14934.	3.1	18
139	Investigation of electronic structure of ternary molybdenum sulphides by means of x-ray emission and photoelectron spectroscopy. Solid State Communications, 1981, 37, 647-651.	1.9	17
140	X-ray emission spectra of diamond films. Surface and Coatings Technology, 1991, 47, 628-630.	4.8	17
141	X-ray emission spectra of YSr2Cu3O7â^δ containing sulphate and phosphate groups. Physica C: Superconductivity and Its Applications, 1994, 224, 317-320.	1.2	17
142	X-ray emission spectra and electronic structure of Culr2S4 and Culr2Se4. Solid State Communications, 1998, 108, 235-239.	1.9	17
143	Effect of atomic magnetic moments on the relative intensity of the L \hat{l}^2 and L \hat{l}^2 components in x-ray emission spectra of 3d transition metal oxides. Physics of the Solid State, 2003, 45, 1048-1055.	0.6	17
144	Soft X-ray spectroscopy of nucleobases, B-DNA and ferrocene–proline conjugates. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 817-822.	1.7	17

#	Article	IF	Citations
145	Solid versus solution: Examining the electronic structure of metallic DNA with soft x-ray spectroscopy. Physical Review B, 2006, 74, .	3.2	17
146	Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends. Journal of Chemical Physics, 2015, 143, 224704.	3.0	17
147	Band Structure and Superconductivity of A ₃ Bâ€√ype Intermetallic Compounds with βâ€W Structure. Physica Status Solidi (B): Basic Research, 1967, 24, K43.	1.5	16
148	X-ray emission spectra and valence band structure of the 3d transition metal oxides. Physica B: Condensed Matter, 1991, 168, 163-169.	2.7	16
149	Electronic structure of Culâ^'x Nix Rh2S4 and CuRh2Se4: Band-structure calculations, x-ray photoemission, and fluorescence measurements. Physical Review B, 2000, 61, 4230-4237.	3.2	16
150	Electronic structure of graphite fluorides. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 288, 340-344.	2.1	16
151	Analysis of XPS and XES of diamond and graphite by DFT calculations using model molecules. Journal of Computational Chemistry, 2001, 22, 102-108.	3.3	16
152	High-resolution angle-resolved photoemission investigation of the electronic structure of Cr-intercalated1Tâ€TiTe2. Physical Review B, 2005, 72, .	3.2	16
153	Identifying valence structure in LiFeAs and NaFeAs with core-level spectroscopy. Journal of Physics Condensed Matter, 2009, 21, 345701.	1.8	16
154	Band-gap engineering in TiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> -based ternary oxides. Physical Review B, 2012, 85, .	3.2	16
155	Electronic band gap reduction and intense luminescence in Co and Mn ion-implanted SiO2. Journal of Applied Physics, 2014, 115, .	2.5	16
156	Calculations of bandstructure of intermetallic compounds using the multiple scattering \hat{X} 1± cluster method and k dependent boundary conditions. Journal of Physics F: Metal Physics, 1981, 11, 405-418.	1.6	15
157	CKα X-ray emission spectra of C60. Physica C: Superconductivity and Its Applications, 1992, 195, 352-354.	1.2	15
158	Sulphur-oxygen substitution in YBa2Cu3O6+xSy analyzed by means of X-ray emission spectroscopy. Physica C: Superconductivity and Its Applications, 1993, 211, 29-35.	1.2	15
159	Characterization of diamondlike films by xâ€ray emission spectroscopy with highâ€energy resolution. Journal of Applied Physics, 1993, 73, 4605-4609.	2.5	15
160	Electronic structure and valence-band spectra of Bi4Ti3O12. Physical Review B, 1995, 52, 11805-11812.	3.2	15
161	No multiatom resonances observed in x-ray fluorescence. Physical Review B, 2000, 62, 15427-15430.	3.2	15
162	Interaction of Cu3dand O2pstates inMg1â^'xCuxOsolid solutions with NaCl structure:â€fX-ray photoelectron and x-ray emission study. Physical Review B, 2000, 62, 4922-4926.	3.2	15

#	Article	IF	CITATIONS
163	Band dispersion of MgB2, graphite and diamond from resonant inelastic scattering. Journal of Physics Condensed Matter, 2003, 15, 2081-2089.	1.8	15
164	Resonant inelastic soft x-ray scattering and electronic structure of LiBC. Journal of Physics Condensed Matter, 2004, 16, 5137-5142.	1.8	15
165	Local Structure of Fe Impurity Atoms in ZnO: Bulk versus Surface. Journal of Physical Chemistry C, 2014, 118, 5336-5345.	3.1	15
166	XPS evidence of degradation mechanism in CH ₃ NH ₃ PbI ₃ hybrid perovskite. Journal of Physics Condensed Matter, 2020, 32, 095501.	1.8	15
167	Interaction of graphene oxide with barium titanate in composite: XPS and DFT studies. Journal of Alloys and Compounds, 2020, 840, 155747.	5.5	15
168	Analysis of the depth profile of Fe-Si buried layers in Fe+-implanted Si wafer by soft X-ray emission spectroscopy. Applied Surface Science, 1993, 72, 73-77.	6.1	14
169	Soft-x-ray-emission study of the influence ofLi+-doping, irradiation, and plastic deformation on CuO. Physical Review B, 1999, 59, 211-214.	3.2	14
170	Electronic structure of FeCr2S4and Fe0.5Cu0.5Cr2S4. Journal of Physics Condensed Matter, 2000, 12, 5411-5421.	1.8	14
171	Local magnetic moments at X-ray spectra of 3d metals. Journal of Magnetism and Magnetic Materials, 2003, 256, 396-403.	2.3	14
172	Influence of Graphite Addition on the Reactivity of Ti Powder with H2under Ball Milling. Journal of Physical Chemistry B, 2006, 110, 196-204.	2.6	14
173	Soft X-ray absorption and emission characterization of nanodiamond prepared by explosive detonation. Diamond and Related Materials, 2007, 16, 350-352.	3.9	14
174	Charge transfer and band gap of ferrocene intercalated into TiSe2. Chemical Physics Letters, 2010, 497, 187-190.	2.6	14
175	Identifying local dopant structures and their impact on the magnetic properties of spintronic materials. Physical Review B, 2011, 83, .	3.2	14
176	Cu–CeO2 nanocomposites: mechanochemical synthesis, physico-chemical properties, CO-PROX activity. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	14
177	ITO Modification for Efficient Inverted Organic Solar Cells. Langmuir, 2017, 33, 10118-10124.	3.5	14
178	Thermal Effects and Halide Mixing of Hybrid Perovskites: MD and XPS Studies. Journal of Physical Chemistry A, 2020, 124, 135-140.	2.5	14
179	The electronic structure of NbO: Theory and experiment. Journal of Physics and Chemistry of Solids, 1978, 39, 1157-1161.	4.0	13
180	X-ray spectra and electronic structure of high-Tc superconductors La1.83Sr0.17CuO4 and Bi4Ca3Sr3O16. Physica C: Superconductivity and Its Applications, 1989, 160, 267-272.	1.2	13

#	Article	IF	CITATIONS
181	Effects of Ce and F doping and reduction on the electronic structure ofNd2â^'xCexCuO4andNd2CuO3.6F0.4as determined by x-ray-emission spectroscopy. Physical Review B, 1993, 47, 9035-9041.	3.2	13
182	Electronic structure of FeSi. Journal of Physics Condensed Matter, 1995, 7, 5529-5535.	1.8	13
183	X-ray emission spectroscopic studies of silicon precipitation in surface layer of SiO2 induced by argon excimer laser irradiation. Applied Surface Science, 1998, 126, 83-91.	6.1	13
184	Stability and Electronic Characteristics of Epitaxial Silicene Multilayers on Ag(111). Advanced Functional Materials, 2015, 25, 4083-4090.	14.9	13
185	Structural defects and electronic structure of N-ion implanted TiO 2 : Bulk versus thin film. Applied Surface Science, 2015, 355, 984-988.	6.1	13
186	Pleomorphic structural imperfections caused by pulsed Bi-implantation in the bulk and thin-film morphologies of TiO2. Applied Surface Science, 2016, 379, 223-229.	6.1	13
187	Characterisation of anodic oxide films on zirconium formed in sulphuric acid: XPS and corrosion resistance investigations. Journal of Solid State Electrochemistry, 2017, 21, 203-210.	2.5	13
188	Influence of the crystal structure and the degree of ordering on the vanadium K-emission spectrum from V3Au-alloy. Solid State Communications, 1975, 16, 1139-1142.	1.9	12
189	Excited states in X-ray L $\hat{l}\pm$ emission spectra of transition metals in oxygen compounds. Journal of Electron Spectroscopy and Related Phenomena, 1979, 16, 455-462.	1.7	12
190	Application of high energy resolved X-ray emission spectroscopy for monitoring of silicide formation in Co/SiO2/Si system. Thin Solid Films, 1997, 311, 28-32.	1.8	12
191	Magnetic circular dichroism in X-ray fluorescence of Heusler alloys at threshold excitation. Solid State Communications, 2000, 117, 79-82.	1.9	12
192	Soft x-ray emission spectra and ferromagnetism in wide-gap doped semiconductors. Low Temperature Physics, 2009, 35, 79-82.	0.6	12
193	The formation of Ti–O tetrahedra and band gap reduction in SiO2 via pulsed ion implantation. Journal of Applied Physics, 2013, 113, 103704.	2.5	12
194	A Reâ€evaluation of How Functional Groups Modify the Electronic Structure of Graphene Oxide. Advanced Materials, 2014, 26, 4870-4874.	21.0	12
195	Analysis of valence XPS and AES of C, N, O, and F-containing substances by DFT calculations using the model molecules. Chemical Physics, 2015, 452, 31-39.	1.9	12
196	Influence of Alkali Treatment on Anodized Titanium Alloys in Wollastonite Suspension. Metals, 2017, 7, 322.	2.3	12
197	Diamond deposition on Fe-Cr-Al alloy substrates: Effect of native oxidation by XPS and XAS investigation. Journal of Alloys and Compounds, 2018, 740, 887-894.	5.5	12
198	When iodide meets bromide: Halide mixing facilitates the light-induced decomposition of perovskite absorber films. Nano Energy, 2021, 86, 106082.	16.0	12

#	Article	IF	CITATIONS
199	Densityâ€ofâ€States Curve for V ₃ Si Built Up from Experimental Xâ€Ray Data. Physica Status Solidi (B): Basic Research, 1971, 43, K49.	1.5	11
200	X-ray emission spectra and quantum chemical calculations of electronic structure of vanadium oxides. Journal of Solid State Chemistry, 1976, 19, 1-11.	2.9	11
201	Soft X-ray fluorescence measurements of irradiated polymer films. Nuclear Instruments & Methods in Physics Research B, 1998, 145, 401-408.	1.4	11
202	Electronic structure of superconducting inorganic polymer (SN)x. Physica C: Superconductivity and Its Applications, 1999, 321, 191-198.	1.2	11
203	X-ray transitions for studying the electronic structure of5dmetals. Physical Review B, 2001, 64, .	3.2	11
204	Probing oxygen and nitrogen bonding sites in chitosan by X-ray emission. Journal of Electron Spectroscopy and Related Phenomena, 2002, 125, 133-138.	1.7	11
205	Electronic properties of pyroxenes <mml:math <br="" xmins:mml="http://www.w3.org/1998/Math/Math/MithMil">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>NaCrSi</mml:mtext></mml:mrow><mml:r xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>NaFeSi</mml:mtext></mml:mrow><mml:r< td=""><td>3.2</td><td>11</td></mml:r<></mml:msub></mml:mrow></mml:r </mml:msub></mml:mrow></mml:math>	3.2	11
206	Characterization of TiAlSiON coatings deposited by plasma enhanced magnetron sputtering: XRD, XPS, and DFT studies. Surface and Coatings Technology, 2015, 278, 87-91.	4.8	11
207	Nanoscale Visualization of Photodegradation Dynamics of MAPbl ₃ Perovskite Films. Journal of Physical Chemistry Letters, 2022, 13, 2744-2749.	4.6	11
208	Characterization of W/Si multilayers by ultrasoft x-ray emission spectroscopy. Journal of Materials Research, 1995, 10, 907-911.	2.6	10
209	X-ray emission spectra and valence state of sulphur atoms of YBa2((CuO)1-x(NiS)x)3O4- delta. Journal of Physics Condensed Matter, 1995, 7, 213-218.	1.8	10
210	X-ray emission and photoelectron spectra, and the location of fluorine atoms in strontium and calcium copper oxyfluorides. Journal of Physics Condensed Matter, 1996, 8, 4847-4854.	1.8	10
211	The influence of high-energy electron irradiation and boron implantation on the oxide thickness in the /Si system. Journal of Physics Condensed Matter, 1997, 9, 6969-6978.	1.8	10
212	Soft X-ray fluorescence measurements of polyimide films. Thin Solid Films, 1999, 357, 91-97.	1.8	10
213	Chemical reactions in polymers induced by ion beam mixing: fluorescence X-ray measurements. Journal of Electron Spectroscopy and Related Phenomena, 2000, 110-111, 87-103.	1.7	10
214	Ion-implantation effects in Al2O3: X-ray fluorescence measurements. Nuclear Instruments & Methods in Physics Research B, 2000, 168, 395-398.	1.4	10
215	Resonant mixing of widely separated intermediate states and charge transfer at the 4d-4fresonance of La compounds. Europhysics Letters, 2000, 49, 665-671.	2.0	10
216	Theoretical X-ray photoelectron and emission spectra of Si- and S-containing polymers by density-functional theory calculations using model molecules. Journal of Molecular Structure, 2001, 561, 17-28.	3.6	10

#	Article	IF	CITATIONS
217	Electronic structure of the transition-metal dicyanamidesM[N(CN)2]2(M=Mn,Fe,Co,Ni,Cu). Physical Review B, 2004, 69, .	3.2	10
218	Electron correlation effects in band structure of magnetic clusters Mn12 and Fe8. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 735-739.	1.7	10
219	Electronic structure and charge carriers in metallic DNA investigated by soft x-ray spectroscopy. Physical Review B, 2006, 73, .	3.2	10
220	X-ray photoelectron and carbon $\hat{\text{Kl}}_{\pm}$ emission measurements and calculations of O-, CO-, N-, and S-containing substances. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 162-172.	2.1	10
221	Effect of <i>h</i> -BN Additive on Hydrogen Sorption by Ti under Mechanical Treatment in H ₂ /He Flow. Journal of Physical Chemistry C, 2008, 112, 5869-5879.	3.1	10
222	Influence of dopants on the impermeability of graphene. Nanoscale, 2017, 9, 6145-6150.	5.6	10
223	Influence of halide mixing on thermal and photochemical stability of hybrid perovskites: XPS studies. Mendeleev Communications, 2018, 28, 381-383.	1.6	10
224	Atomic and electronic structure of graphene oxide/Cu interface. Thin Solid Films, 2018, 665, 99-108.	1.8	10
225	Interfacial reactions in Al2O3/Cr2O3 layers: Electronic structure calculations and X-ray photoelectron spectra. Thin Solid Films, 2018, 665, 6-8.	1.8	10
226	XPS characterization of surface layers of stainless steel nitrided in electron beam plasma at low temperature. Surface and Coatings Technology, 2020, 386, 125492.	4.8	10
227	Temperature Dynamics of MAPbI3 and PbI2 Photolysis: Revealing the Interplay between Light and Heat, Two Enemies of Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 4362-4367.	4.6	10
228	Correlation effects in the photoelectron spectra of nickel. Solid State Communications, 1981, 40, 927-928.	1.9	9
229	X-ray emission spectra and electronic structure ZrV2 and ZrV2Dx. Solid State Communications, 1985, 55, 19-23.	1.9	9
230	Possibility of sulphur-oxygen substitution in YBa2Cu3O6+xSy analyzed by means of X-ray emission spectroscopy. Journal of Physics and Chemistry of Solids, 1993, 54, 1211-1214.	4.0	9
231	X-ray emission spectra and structural models of BCN materials. Journal of Alloys and Compounds, 1997, 248, 86-89.	5.5	9
232	Substitution of SO42â ⁻ anions in La1.85Sr0.15CuO4: structure and superconductivity. Physica C: Superconductivity and Its Applications, 1997, 291, 104-112.	1.2	9
233	Resonant X-ray emission and X-ray absorption spectra of 3d metals in Co2MnZ (, Ga, Sn, Sb) Heusler alloys as an element-selective probe of spin character of valence band. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 765-769.	1.7	9
234	Iron Nanoparticles in Amorphous SiO[sub 2]: X-ray Emission and Absorption Spectra. Physics of the Solid State, 2005, 47, 754.	0.6	9

#	Article	IF	CITATIONS
235	Local bonding structure in mechanically activated TiH2 and TiH2+graphite mixture. Journal of Alloys and Compounds, 2005, 395, 240-246.	5 . 5	9
236	Defect-induced ferromagnetism in Mn-doped Cu ₂ O. Journal of Physics Condensed Matter, 2008, 20, 215216.	1.8	9
237	The coherent potential approximation for strongly correlated systems: electronic structure and magnetic properties of NiO–ZnO solid solutions. Journal of Physics Condensed Matter, 2014, 26, 115501.	1.8	9
238	Electronic structure of RMn2Si2 (RÂ=ÂY, La) intermetallics: DFT and XPS studies. Journal of Alloys and Compounds, 2017, 695, 1663-1671.	5 . 5	9
239	The catalytic role of platinum nanoparticles in laser generated nanocarbons. Applied Surface Science, 2021, 558, 149890.	6.1	9
240	Crystal-Field Splitting of Levels and X-Ray Spectra of Transition Metal Monoxides. Physica Status Solidi (B): Basic Research, 1969, 35, 89-93.	1.5	8
241	Xâ∈Ray Kâ∈Emission Spectrum of Titanium in Oxycarbide Oxynitride, and Carbonitride. Physica Status Solidi (B): Basic Research, 1973, 60, K65.	1.5	8
242	The effect of atomic ordering on the photoelectron spectra of V3Au. Solid State Communications, 1977, 22, 375-378.	1.9	8
243	Electronic structure and chemical bonding in refractory metal compounds. Materials Research Bulletin, 1978, 13, 1433-1439.	5.2	8
244	X-ray emission spectra and electronic structure of 3d impurities in Cu alloys. Journal of Physics F: Metal Physics, 1985, 15, 2041-2051.	1.6	8
245	On the interpretation of X-ray spectra of amorphous and crystalline SiO2. Journal of Non-Crystalline Solids, 1987, 94, 276-281.	3.1	8
246	Ultrasoft X-Ray Emission Spectroscopic Analysis for Effects of Vacuum Ultraviolet Rare Gas Excimer Laser Irradiation on Silicon Nitride Films. Japanese Journal of Applied Physics, 1994, 33, L1549-L1551.	1.5	8
247	The X-ray emission spectra and electronic structure of the misfit layer compounds (BiS)1.08NbS2and (PbS)1.14TaS2. Journal of Physics Condensed Matter, 1994, 6, 3993-3998.	1.8	8
248	Electronic structure of KNbO3: NbM4,5x-ray-fluorescence measurements. Physical Review B, 1999, 60, 4422-4425.	3.2	8
249	Radiation-induced degradation of polyethersulphone films studied by fluorescent X-ray emission spectroscopy. Nuclear Instruments & Methods in Physics Research B, 1999, 155, 431-439.	1.4	8
250	Combined study of KNbO3 and KTaO3 by different techniques of photoelectron and X-ray emission spectroscopy. Journal of Physics and Chemistry of Solids, 2000, 61, 265-269.	4.0	8
251	Spectroscopic observation of polaron-lattice band structure in the conducting polymer polyaniline. Journal of Physics Condensed Matter, 2001, 13, 3907-3912.	1.8	8
252	Ti/C and Ti/h-BN nanocomposites: Comparison of hydrogen sorption/desorption properties. Chemical Physics Letters, 2008, 465, 82-85.	2.6	8

#	Article	IF	CITATIONS
253	Characterization of oxide layers formed on electrochemically treated Ti by using soft X-ray absorption measurements. Journal of Electron Spectroscopy and Related Phenomena, 2009, 169, 46-50.	1.7	8
254	Element-specific electronic structure of Mn dopants and ferromagnetism of (Zn,Mn)O thin films. Thin Solid Films, 2010, 518, 2825-2829.	1.8	8
255	Electronic Structure of Aluminum Oxide with Oxygen Vacancies. Physics of Metals and Metallography, 2018, 119, 707-712.	1.0	8
256	Effect of doping and annealing on the electronic structure and magnetic properties of nanoscale Co and Zn co-doped SnO2: An experimental study and first-principles modeling. Journal of Alloys and Compounds, 2019, 799, 433-441.	5.5	8
257	Amine-selective gas sensor based on organic field-effect transistor with the porphyrin monolayer receptor. Synthetic Metals, 2020, 260, 116295.	3.9	8
258	Electronic structure, charge distribution and x-ray emission spectra of V3Si. Solid State Communications, 1979, 29, 185-190.	1.9	7
259	Soft X-ray emission, photoelectron spectra and electron structure of VRu. Solid State Communications, 1979, 29, 59-61.	1.9	7
260	The electron structure and x-ray emission spectra of noble metal aluminides. Solid State Communications, 1980, 36, 769-772.	1.9	7
261	The anisotropy of X-ray emission spectra for 2H-MoS2 single crystals. Journal of Electron Spectroscopy and Related Phenomena, 1983, 32, 103-112.	1.7	7
262	The ground state of the antiferromagnetic semiconductor YBa2Cu3O6: electronic structure calculations and analysis of X-ray spectra. Materials Letters, 1990, 10, 34-38.	2.6	7
263	Soft X-ray emission study of YBa2Cu4O8. Solid State Communications, 1992, 84, 995-997.	1.9	7
264	Excitation energy dependence of X-ray emission spectra and electronic structure of Eu1â^'xCaxMnO3. Journal of Electron Spectroscopy and Related Phenomena, 1998, 96, 187-194.	1.7	7
265	X-ray fluorescence study of organic-inorganic polymer conversion into ceramics induced by ion irradiation. Physical Review B, 1999, 60, 15100-15106.	3.2	7
266	Characterization of CNx films by X-ray emission measurements. Thin Solid Films, 2002, 402, 60-64.	1.8	7
267	Application of genetic algorithms for the optimization of X-ray waveguides. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 320, 234-237.	2.1	7
268	Co3d-level position in ZnS:Co semiconductors. Physical Review B, 2003, 68, .	3.2	7
269	The origin of the resistance change in GeSbTe films. Applied Physics Letters, 2010, 97, 152113.	3.3	7
270	Formation of GeO and GeO nanoclusters in Ge+-implanted SiO2/Si thin-film heterostructures under rapid thermal annealing. Applied Surface Science, 2015, 349, 780-784.	6.1	7

#	Article	IF	Citations
271	Local moments and electronic correlations in Fe-based Heusler alloys: $\hat{\text{Kl}}_{\pm}$ x-ray emission spectra measurements. Journal of Alloys and Compounds, 2016, 679, 268-276.	5.5	7
272	Spectral and magnetic properties of Na ₂ RuO ₃ . Journal of Physics Condensed Matter, 2017, 29, 405804.	1.8	7
273	Mixed Substitution in Pâ€Doped Anatase TiO ₂ Probed by XPS and DFT. Physica Status Solidi (B): Basic Research, 2018, 255, 1700477.	1.5	7
274	Optical Transparency and Local Electronic Structure of Yb-Doped Y2O3 Ceramics with Tetravalent Additives. Symmetry, 2019, 11, 243.	2.2	7
275	Spectacular Enhancement of the Thermal and Photochemical Stability of MAPbI3 Perovskite Films Using Functionalized Tetraazaadamantane as a Molecular Modifier. Energies, 2021, 14, 669.	3.1	7
276	Electronic Structure of Doped La-Mn-O Perovskites. Acta Physica Polonica A, 2000, 98, 587-591.	0.5	7
277	The electronic structure and experimental spectra of some rare-earth oxyflourides. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1980, 101, 364-375.	0.9	6
278	The peculiarities of electronic structure of nonstoichiometric Ti and Zr hydrides. Journal of Physics and Chemistry of Solids, 1985, 46, 823-829.	4.0	6
279	Se and Te substitutions in YSr2Cu3O7-y and [Y/Ce]2Sr2Cu3O9-y. Physica C: Superconductivity and Its Applications, 1994, 231, 109-112.	1.2	6
280	X-ray emission spectra and analysis of F-doping of Bi2212 compound. Physica C: Superconductivity and Its Applications, 1994, 226, 58-60.	1.2	6
281	Electronic structure of La2â^'xSrxNiO4+δ studied by soft X-ray absorption and emission spectroscopies. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1047-1048.	1.2	6
282	X-ray emission spectra and interfacial solid-phase reactions in $Hf/(001)Si$ system. Thin Solid Films, 1999, 350, 143-146.	1.8	6
283	Theoretical X-Ray Photoelectron and Emission Spectra of C-, N-, and O-Containing Polymers by Density-Functional Theory Calculations using Model Molecules. Polymer Journal, 2000, 32, 1030-1037.	2.7	6
284	Electronic structure of the mixed-valent system V2â^'Mo O5. Surface Science, 2001, 482-485, 708-711.	1.9	6
285	Electronic structure of cobalt-doped manganites. Surface Science, 2003, 532-535, 488-492.	1.9	6
286	Resonantly excited cascade x-ray emission from La. Physical Review B, 2005, 72, .	3.2	6
287	Electronic structure of carbosulfide superconductors. Physical Review B, 2005, 71, .	3.2	6
288	On the bonding situation in TlCo2Se2. Journal of Physics Condensed Matter, 2006, 18, 1757-1768.	1.8	6

#	Article	IF	Citations
289	Interfacial properties and characterization of Sc/Si multilayers. Thin Solid Films, 2010, 518, 3808-3812.	1.8	6
290	Pb+ implanted SiO2 probed by soft x-ray emission and absorption spectroscopy. Journal of Non-Crystalline Solids, 2011, 357, 3381-3384.	3.1	6
291	Evaluation of antioxidant activity and electronic structure of aspirin and paracetamol. Journal of Molecular Structure, 2011, 985, 63-69.	3.6	6
292	Selective Response of Mesoporous Silicon to Adsorbants with Nitro Groups. Chemistry - A European Journal, 2012, 18, 2912-2922.	3.3	6
293	Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation. Scientific Reports, 2015, 5, 15380.	3.3	6
294	Searching for pure iron in nature: the Chelyabinsk meteorite. RSC Advances, 2016, 6, 85844-85851.	3.6	6
295	Investigation on electronic structure and magnetic properties of Co and Mn incorporated nanoscale SnO2. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6
296	Electronic Properties of Carbyne Chains: Experiment and Theory. Journal of Physical Chemistry C, 2021, 125, 8268-8273.	3.1	6
297	Electronic structure of clusters of A-15 compounds with radiation induced defects. Solid State Communications, 1981, 38, 507-509.	1.9	5
298	Anisotropy of the X-ray K-emission spectra of vanadium in KVO3 and NaVO3 single crystals. Journal of Electron Spectroscopy and Related Phenomena, 1982, 28, 1-10.	1.7	5
299	X-ray emission spectra and electronic structure of Mn impurities in diluted Al, Ni and Cu-based solid solutions. Solid State Communications, 1986, 58, 143-146.	1.9	5
300	Borate substitution in YSrBaCu3O7 studied by X-ray emission spectroscopy. Physica C: Superconductivity and Its Applications, 1994, 227, 309-312.	1.2	5
301	Transition metal impurities and band offsets in wide gap II–VI semiconductors: Zn1â^'xMnxSe(Ni) compounds. Solid State Communications, 1994, 91, 279-282.	1.9	5
302	Structural and superconducting properties of MS (M = Fe, Ni or Zn)-substituted. Journal of Physics Condensed Matter, 1996, 8, 10545-10550.	1.8	5
303	VALENCE BAND SPECTRA OF BaCo1â^'xNixS2. Journal of Physics and Chemistry of Solids, 1998, 59, 1459-1467.	4.0	5
304	Solid-phase reactions in $Ir/(111)$ Si systems studied by means of x-ray emission spectroscopy. Journal of Materials Research, 1998, 13, 1950-1955.	2.6	5
305	Sulphur Precipitation in Annealed Sulphur-Doped Nickel Studied by Fluorescent X-ray Emission. Materials Transactions, JIM, 1998, 39, 570-573.	0.9	5
306	Valence-band spectra of BEDT-TTF and TTF-based magnetic charge-transfer salts. Physical Review B, 2002, 65, .	3.2	5

#	Article	IF	Citations
307	Isomer structure of high-pressure hydrofullerene probed by soft X-ray emission. Computational and Theoretical Chemistry, 2003, 639, 27-33.	1.5	5
308	X-ray emission spectroscopy study of the Verwey transition in Fe3O4. Journal of Physics Condensed Matter, 2003, 15, 2017-2022.	1.8	5
309	X-ray emission study of the electronic structure of nanocrystalline Al2O3. Physics of the Solid State, 2004, 46, 2134-2138.	0.6	5
310	Quantitative band mapping of crystals from resonant inelastic X-ray scattering. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 591-594.	1.7	5
311	X-ray Fluorescence Spectroscopy of Novel Materials. Inorganic Materials, 2005, 41, S1-S23.	0.8	5
312	Ion irradiation induced reduction of Fe3+to Fe2+and Fe0in triethoxysilane films. Journal of Physics Condensed Matter, 2005, 17, 7023-7028.	1.8	5
313	Excitation energy dependence of 3d-metal L2,3x-ray emission spectra of $M[N(CN)2]2(M = Mn, Fe, Co, Ni,)$ Tj ETQ	q110.78	4314 rgBT /(
314	Local electronic structure of Mn dopants in ZnO probed by resonant inelastic x-ray scattering. Journal of Physics Condensed Matter, 2007, 19, 276210.	1.8	5
315	Energy band structure and X-ray spectra of phenakite Be2SiO4. Physics of the Solid State, 2008, 50, 615-620.	0.6	5
316	Effect of N, C and B interstitial atoms on local bonding structure in mechanically activated TiH2/h-BN, TiH2/C, and TiH2/B mixtures. Journal of Alloys and Compounds, 2009, 483, 309-312.	5.5	5
317	Correlation effects inNi 3dstates of LaNiPO. Physical Review B, 2010, 81, .	3.2	5
318	Surface Studies of Coarse-Grained and Nanostructured Titanium Implants. Journal of Nanoscience and Nanotechnology, 2012, 12, 8567-8572.	0.9	5
319	Arsenic contamination of coarse-grained and nanostructured nitinol surfaces induced by chemical treatment in hydrofluoric acid., 2012, 100B, 1812-1816.		5
320	The appearance of Ti3+ states in solution-processed TiO <i>x</i> buffer layers in inverted organic photovoltaics. Applied Physics Letters, 2016, 109, .	3.3	5
321	Enhanced clustering tendency of Cu-impurities with a number of oxygen vacancies in heavy carbon-loaded TiO2 - the bulk and surface morphologies. Solid State Sciences, 2017, 71, 130-138.	3.2	5
322	Towards understanding the origin of the hysteresis effects and threshold voltage shift in organic field-effect transistors based on the electrochemically grown AlOx dielectric. Thin Solid Films, 2018, 649, 7-11.	1.8	5
323	Fundamental crystal field excitations in magnetic semiconductor SnO ₂ : Mn, Fe, Co, Ni. Physical Chemistry Chemical Physics, 2019, 21, 11992-11998.	2.8	5
324	Origin of magnetic phase transition in RMn2Si2 (RÂ=Ârare-earth ion or Y) intermetallics. Computational Materials Science, 2020, 184, 109901.	3.0	5

#	Article	lF	CITATIONS
325	X-ray photoelectron spectroscopy study of Cr/[Pd/Gd/Pd/Fe] multilayered nanostructures. Thin Solid Films, 2020, 709, 138251.	1.8	5
326	Rationalizing the effect of overstoichiometric PbI2 on the stability of perovskite solar cells in the context of precursor solution formulation. Synthetic Metals, 2021, 278, 116823.	3.9	5
327	Octahydroxytetraazapentacenedione: New organic electrode material for fast and stable potassium batteries. Journal of Power Sources, 2022, 517, 230711.	7.8	5
328	High-capacity polymer electrodes for potassium batteries. Journal of Materials Chemistry A, 2022, 10, 3044-3050.	10.3	5
329	Electronic structure and anisotropy of X-ray emission spectra of NaV6O15 monocrystal. Journal of Solid State Chemistry, 1980, 32, 377-387.	2.9	4
330	An investigation of the effect of the nearest surroundings on the formation of V Lα emission bands for solid solutions of rare earth orthovanadates—orthophosphates. Journal of Electron Spectroscopy and Related Phenomena, 1985, 35, 87-99.	1.7	4
331	X-ray emission spectra and electronic structure of high-Tc superconductors and binary oxides. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 431-438.	1.7	4
332	X-ray emission spectra and the effect of oxidation on the local structure of porous and spark-processed silicon. Journal of Physics Condensed Matter, 1997, 9, 2671-2681.	1.8	4
333	Single-ion approach to the interpretation of the x-ray photoelectron spectra of the valence bands of monoxides of 3d elements. Physics of the Solid State, 1997, 39, 948-954.	0.6	4
334	Local and Electronic Structure of Siloxene. Journal of Materials Research, 1999, 14, 1235-1237.	2.6	4
335	Electronic structure of molecular superconductors containing paramagnetic3dions. Physical Review B, 2000, 62, 11380-11383.	3.2	4
336	Soft X-ray fluorescence and photoluminescence of Si nanocrystals embedded in SiO2. Applied Physics A: Materials Science and Processing, 2001, 72, 303-306.	2.3	4
337	The electronic structure of TPD films grown by different methods. Organic Electronics, 2002, 3, 15-21.	2.6	4
338	X-ray emission spectra of vanadium atoms in a new series of (Cu,V)-based high-Tc superconductors. Journal of Solid State Chemistry, 2003, 170, 188-191.	2.9	4
339	Tight-binding model for the x-ray absorption and emission spectra of dilute GaNxAs1 \hat{a} °xat the nitrogen Kedge. Physical Review B, 2004, 69, .	3.2	4
340	Influence of the Coulomb parameter U on partial densities of states of CuGeO $\mbox{\ \ \ }$ mathsf{3}\$: comparison with X-ray spectral data. European Physical Journal B, 2004, 41, 295-300.	1.5	4
341	Soft X-ray emission studies of biomaterials. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 811-815.	1.7	4
342	The effect of high iron-ion implantation doses on the X-ray emission spectra of silicon. Physics of the Solid State, 2006, 48, 218-223.	0.6	4

#	Article	IF	CITATIONS
343	An x-ray emission and density functional theory study of the electronic structure of Zn1â^xMnxS. Journal of Physics Condensed Matter, 2006, 18, 10405-10412.	1.8	4
344	Effect of high doses on the Si L 2,3 x-ray emission spectra of silicon implanted with iron ions under steady-state conditions. Physics of the Solid State, 2007, 49, 75-81.	0.6	4
345	X-ray emission and photoluminescence spectroscopy of nanostructured silica with implanted copper ions. Physics of the Solid State, 2008, 50, 2322-2326.	0.6	4
346	Characterization of chemically treated titanium using soft X-ray fluorescence. Materials Science and Engineering C, 2009, 29, 136-139.	7.3	4
347	Structural models of FeSex. Journal of Physics Condensed Matter, 2009, 21, 435702.	1.8	4
348	Interplay of ballistic and chemical effects in the formation of structural defects for Sn and Pb implanted silica. Journal of Non-Crystalline Solids, 2012, 358, 3187-3192.	3.1	4
349	Computer simulation of the energy gap in ZnO- and TiO2-based semiconductor photocatalysts. Journal of Experimental and Theoretical Physics, 2012, 115, 1048-1054.	0.9	4
350	Electronic structure of copper pnictides: Influence of different cations and pnictogens. Physical Review B, 2013, 88, .	3.2	4
351	Magnetic ordering in intermetallicLa1-xTbxMn2Si2compounds. Journal of Magnetism and Magnetic Materials, 2018, 454, 144-149.	2.3	4
352	X-ray photoelectron spectra and electronic structure of Mo doped V2O5. Thin Solid Films, 2020, 713, 138360.	1.8	4
353	Compounds with A-15 Structure. Springer Series in Solid-state Sciences, 1982, , 259-374.	0.3	4
354	The \hat{l} -parameter for the CPA-theory as determined from X-ray spectra. Solid State Communications, 1975, 17, 1059-1061.	1.9	3
355	Photoemission and X-ray emission spectra for niobium oxide. Inorganic and Nuclear Chemistry Letters, 1978, 14, 75-78.	0.7	3
356	X-Ray emission K-bands of carbon in thermoanthracites. Carbon, 1982, 20, 293-295.	10.3	3
357	Band structure of titanium carbide containing nitrogen and oxygen impurities. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1986, 53, 69-75.	0.6	3
358	Redistribution of O2p-states in La2CuO4 by Sr-doping. Solid State Communications, 1995, 95, 503-506.	1.9	3
359	Local structure of porous silicon studied by means of X-ray emission spectroscopy. Applied Physics A: Materials Science and Processing, 1997, 65, 183-189.	2.3	3
360	Excitation energy dependence of SL2,3 X-ray fluorescent emission of BaNiS2 near the S 2p threshold. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 235, 191-194.	2.1	3

#	Article	IF	CITATIONS
361	Electronic structure of ternary transition metal oxides and sulphides: X-ray photoelectron and X-ray emission spectroscopy study. Journal of Electron Spectroscopy and Related Phenomena, 1998, 88-91, 441-447.	1.7	3
362	X-Ray Emission Spectroscopic Analysis for Crystallized Amorphous Silicon Induced by Excimer Laser Annealing. Journal of the Optical Society of Korea, 2001, 5, 1-4.	0.6	3
363	Multi-atom resonances and soft X-ray emission. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1529-1532.	1.6	3
364	Numerical Simulation of C/C/C Planar X-ray Waveguides. Analytical Sciences, 2005, 21, 811-813.	1.6	3
365	Probing changes in theMn3dband ofSm0.525Sr0.475MnO3induced by oxygen isotope substitution. Physical Review B, 2006, 74, .	3.2	3
366	Electronic structure and X-ray spectra of transition metal sulfides NiS, CuS, and ZnS. Physics of the Solid State, 2009, 51, 2207-2210.	0.6	3
367	Electronic structure of Mn in (Zn, Mn)O probed by resonant X-ray emission spectroscopy. Solid State Communications, 2010, 150, 1065-1068.	1.9	3
368	X-ray absorption and emission spectroscopic investigation of Mn doped ZnO films. Applied Surface Science, 2011, 257, 10748-10748.	6.1	3
369	Valence structure of alkaline and post-transition metal oxides. Proceedings of SPIE, 2011, , .	0.8	3
370	Structural ordering in a silica glass matrix under Mn ion implantation. Journal of Physics Condensed Matter, 2012, 24, 185402.	1.8	3
371	Electronic structure of alumina doped by light elements. Computational Condensed Matter, 2018, 15, 48-54.	2.1	3
372	Mechanochemical Activation of Cu–CeO2 Mixture as a Promising Technique for the Solid-State Synthesis of Catalysts for the Selective Oxidation of CO in the Presence of H2. Kinetics and Catalysis, 2018, 59, 160-173.	1.0	3
373	X-ray Photoelectron Spectra of Ag-Au Colloidal Nanoparticles after Interaction with Linear Carbon Chains. Applied Sciences (Switzerland), 2021, 11, 685.	2.5	3
374	Electronic structure of transition metal monosulfides and interpretation of their x-ray emission spectra on the basis of MO LCAO cluster calculations. Journal of Structural Chemistry, 1980, 21, 291-299.	1.0	2
375	Correlation effects in the photoelectron spectra of 3d metals. Journal of Electron Spectroscopy and Related Phenomena, 1985, 35, 185-190.	1.7	2
376	Identification of structural defects in diamond-like films based on the comparison of X-rayCKα emission spectra with simple band structure calculations. Diamond and Related Materials, 1992, 1, 337-340.	3.9	2
377	Oxygen-cation interactions in superconducting cuprates and related compounds. Solid State Communications, 1994, 90, 769-772.	1.9	2
378	LMTO-ASA band structure calculations of BaVS3, BaTiS3and their solid solutions. Physica Scripta, 1994, 50, 90-92.	2.5	2

#	Article	IF	Citations
379	Electronic structure of cuprates containing sulfur and phosphorus oxyanions. Physical Review B, 1995, 52, 11830-11836.	3.2	2
380	Electronic structure of YNi $1\hat{a}^{\sim}$ xCuxBC studied by X-ray emission and photoelectron spectroscopy. Solid State Communications, 1998, 105, 65-70.	1.9	2
381	X-ray emission and photoelectron spectra of Pr0.5Sr0.5MnO3. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 793-798.	1.7	2
382	The effects of boron impurities on the atomic bonding and electronic structure of Ni3Al. Journal of Electron Spectroscopy and Related Phenomena, 2000, 110-111, 69-74.	1.7	2
383	X-Ray fluorescence measurements of advanced organic materials. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 889-894.	1.7	2
384	Local and electronic structure of carbon and nitrogen atoms in oxycarbonitrate superconductors. Physica C: Superconductivity and Its Applications, 2001, 363, 55-59.	1.2	2
385	Analysis of the electronic structure of human hemoglobin from soft X-ray emission. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 279-282.	1.7	2
386	Reduction of conductivity and ferromagnetism induced by Ag doping in ZnO:Co. Thin Solid Films, 2013, 545, 488-495.	1.8	2
387	Electronic Structure and Magnetic Properties of Iron Doped TiO ₂ (Rutile): XPS Measurements and CPA Calculations. Solid State Phenomena, 2014, 215, 28-34.	0.3	2
388	Pronounced, Reversible, and in Situ Modification of the Electronic Structure of Graphene Oxide via Buckling below 160 K. Journal of Physical Chemistry Letters, 2015, 6, 3163-3169.	4.6	2
389	XPS spectra, electronic structure, and magnetic properties of RFe5Al7 intermetallics. Journal of Alloys and Compounds, 2018, 733, 82-90.	5.5	2
390	Energy band gaps and excited states in Si QD/SiO _{<i>x</i>} /R _{<i>y</i>} O _{<i>z</i>} (R  =  Si, Al, Zr) suboxide superlattices. Journal of Physics Condensed Matter, 2 415301.	O1198,31,	2
391	X-ray appearance potential spectra and electronic structure of transition metals. Journal of Electron Spectroscopy and Related Phenomena, 1981, 24, 237-241.	1.7	1
392	Calculation of the appearance-potential spectrum of YVO4 in the cluster approximation. Journal of Electron Spectroscopy and Related Phenomena, 1981, 22, 277-281.	1.7	1
393	UV photoemission from V72Pt28. Solid State Communications, 1983, 48, 715-717.	1.9	1
394	X-ray emission spectra and electronic structure of TiS2. Journal of Structural Chemistry, 1984, 25, 35-41.	1.0	1
395	Correlation effects in photoelectron spectra of high-Tc superconductive oxides: the hole-induced redistribution of Cu3d states in La2CuO4. Journal of Electron Spectroscopy and Related Phenomena, 1990, 50, 213-218.	1.7	1
396	Time and composition dependence of the spectral shape of the X-ray Ce LIII absorption in the R2â^'xCexCuO4â^'Î' superconductors. Materials Letters, 1993, 16, 265-269.	2.6	1

#	Article	IF	Citations
397	Crystallization of CVD carbon films on Si substrates. Materials Letters, 1994, 19, 123-125.	2.6	1
398	X-ray fluorescence measurements of organic superconductorsl̂ºâ^'(ET)2Cu[N(CN)2]Brandl̂ºâ^'(ET)2Cu(NCS)2. Physical Review B, 1999, 60, 13169-13174.	3.2	1
399	Soft X-ray fluorescence measurements of irradiated polyimide and polycarbosilane films. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 565-571.	1.7	1
400	Resonant Raman scattering in Nd2O3 and the electronic structure of Sr2RuO4 studied by synchrotron radiation excitation. Journal of Physics and Chemistry of Solids, 2000, 61, 435-444.	4.0	1
401	The electronic structure of ion beam mixed ferromagnetic multilayered films. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 807-811.	1.7	1
402	Electronic structure of charge transfer salts. Physical Review B, 2001, 64, .	3.2	1
403	Chemical shifts in the x-ray emission spectra of MgB2 and their correlation with the electronic structure. Physics of the Solid State, 2004, 46, 1994-1997.	0.6	1
404	Local Environment of Fluorine Atoms in Sr[sub 2]Ca[sub n][sub – 1]Cu[sub n]O[sub 2][sub n][sub + Î]F[sub 2 ±][sub y] (n = 2, 3) High-Temperature Superconductors Grown under High Pressure. Physics of the Solid State, 2005, 47, 1211.	0.6	1
405	X-ray spectroscopic study of the electronic structure and location of hydrogen atoms in HfTi2H x hydrides. Physics of the Solid State, 2006, 48, 30-36.	0.6	1
406	The origin of an elastic line in the L 3 x-ray emission spectrum of metallic manganese. Physics of the Solid State, 2006, 48, 420-426.	0.6	1
407	X-ray spectra and electronic structure of Sc and Ti dihydrides. Journal of Physics Condensed Matter, 2008, 20, 335224.	1.8	1
408	Electronic structure of the Si-C-N amorphous films. Physics of the Solid State, 2011, 53, 1806-1810.	0.6	1
409	Formation of Mn-oxide clusters in Mn+-implanted SiO2 probed by soft X-ray emission and absorption spectroscopy. Vacuum, 2012, 86, 1615-1617.	3.5	1
410	X-Ray Spectroscopic Study of the Conduction Band of K3:Anthracene and K3:Phenanthrene. Journal of Physical Chemistry C, 2013, , 130826233621000.	3.1	1
411	First-Principles Calculations of the Electronic Structure of Imperfect Crystals in the Coherent Potential Approximation. Physics of Metals and Metallography, 2018, 119, 1249-1253.	1.0	1
412	Electronic structure and structural defects in 3d-metal doped In2O3. Journal of Materials Science: Materials in Electronics, 2019, 30, 14091-14098.	2.2	1
413	Influence of Oxygen Ion Migration from Substrates on Photochemical Degradation of CH3NH3PbI3 Hybrid Perovskite. Energies, 2021, 14, 5062.	3.1	1
414	X-ray emission spectra and electron structure of neutron irradiated V3Si. Solid State Communications, 1985, 54, 933-935.	1.9	0

#	Article	IF	Citations
415	Electronic structure and nature of the color centers in MgF2. Journal of Structural Chemistry, 1986, 27, 235-238.	1.0	0
416	Electron structure and correlation effects in high-T c superconductors and transition metal oxides. Bulletin of Materials Science, 1991, 14, 1087-1091.	1.7	0
417	Investigation of the electronic structure of the compounds LixTi2-yNby(PO4)3. Journal of Structural Chemistry, 1991, 32, 135-138.	1.0	0
418	The non-metal-metal transition of Bi2Sr2Ca1 \hat{a} 2xYxCu2O8+ \hat{l} 5 studied by soft x-ray emission spectroscopy. Journal of Physics and Chemistry of Solids, 1993, 54, 1219-1222.	4.0	0
419	Electronic structure and properties of the ground state of copper in semiconducting cuprates. Journal of Structural Chemistry, 1995, 36, 578-583.	1.0	0
420	X-ray emission spectra of fluorinated Bi2223 compound. Solid State Communications, 1995, 96, 967-969.	1.9	0
421	Examples of soft X-ray emission and inelastic scattering excited by synchrotron radiation. Journal of Alloys and Compounds, 1999, 286, 47-55.	5.5	0
422	Soft-x-ray fluorescence study of the quasi-one-dimensional Heisenberg antiferromagnet tetraphenylverdazyl. Physical Review B, 2000, 62, 15660-15665.	3.2	0
423	X-Ray Photoelectron Spectra in TiC–NbC Solid Solutions. Journal of Structural Chemistry, 2001, 42, 394-397.	1.0	0
424	Monitoring 5p–4d soft X-ray emission of La when exciting through the low-lying 3d–4f threshold. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 577-580.	1.7	0
425	Numerical Simulation of Planar X-Ray Waveguides with Low-Z Cladding Layers. Bunseki Kagaku, 2006, 55, 447-452.	0.2	0
426	Obituary for Academician Vadim Ivanovitch Nefedov. Journal of Electron Spectroscopy and Related Phenomena, 2008, 168, 47.	1.7	0
427	Specific features of steady-state implantation of crystalline silicon with a molecular oxygen-nitrogen beam: Si L 2, 3 x-ray emission spectra. Physics of the Solid State, 2008, 50, 146-151.	0.6	0
428	Ti/C and Ti/B Nanocomposites: Comparison of Sorption-Desorption Properties. Solid State Phenomena, 2009, 151, 203-207.	0.3	0
429	RIXS approach to local environment around impurity atoms in diluted magnetic semiconductors and dielectrics. Journal of Electron Spectroscopy and Related Phenomena, 2010, 181, 202-205.	1.7	0
430	Effect of additives on titanium-hydrogen interaction under ball milling of Ti powder probed by hard x-ray emission spectroscopy. Journal of Applied Physics, 2011, 110, .	2.5	0
431	CVD Diamond Coating on Al-Interlayered FeCoNi Alloy Substrate: An Interfacial Study. High Temperature Materials and Processes, 2015, 34, .	1.4	0
432	Evidence of random distribution of carbon impurities in oxygen sites of zinc oxide. Physica B: Condensed Matter, 2018, 545, 172-175.	2.7	0

#	Article	IF	CITATIONS
433	Effect of Doping with Carbon and Boron Nitride on the Hydrogen Absorption in Titanium. , 2007, , .		O
434	X-ray spectroscopy study of ThO2 and ThF4. Nuclear Technology and Radiation Protection, 2010, 25, 8-12.	0.8	0
435	High Temperature Superconductors and Lattice Instability of Compounds. Springer Series in Solid-state Sciences, 1982, , 433-454.	0.3	0
436	Radiation Effects on Superconductors. Springer Series in Solid-state Sciences, 1982, , 455-475.	0.3	0
437	Other Compounds Based on Transition Metals. Springer Series in Solid-state Sciences, 1982, , 375-432.	0.3	0
438	Exploring the radiation stability of perovskite solar cells. , 0, , .		0
439	Unravelling the Material Composition Effects on the Gamma Ray Stability of Lead Halide Perovskite Solar Cells: MAPbI3 breaks the records. , 0, , .		0
440	Temperature Dynamics of the MAPbI3 and PbI2 Photolysis. , 0, , .		0
441	Theoretical Analysis of Light-induced decomposition of Mixed-halide perovskite absorber films. , 0, , .		О