List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9395669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	p67 phox â€derived selfâ€assembled peptides prevent Nox2 NADPH oxidase activation by an autoâ€inhibitory mechanism. Journal of Leukocyte Biology, 2021, 109, 657-673.	3.3	3
2	The molecular basis of Racâ€GTP action—promoting binding of p67 phox to Nox2 by disengaging the β hairpin from downstream residues. Journal of Leukocyte Biology, 2021, 110, 219-237.	3.3	6
3	p67 <i>phox</i> binds to a newly identified site in Nox2 following the disengagement of an intramolecular bond—Canaan sighted?. Journal of Leukocyte Biology, 2020, 107, 509-528.	3.3	6
4	Cell-Free NADPH Oxidase Activation Assays: A Triumph of Reductionism. Methods in Molecular Biology, 2020, 2087, 325-411.	0.9	17
5	Using Synthetic Peptides for Exploring Protein-Protein Interactions in the Assembly of the NADPH Oxidase Complex. Methods in Molecular Biology, 2019, 1982, 377-415.	0.9	5
6	Turning off NADPH oxidase-2 by impeding p67phox activation in infected mouse macrophages reduced viral entry and inflammation. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1263-1275.	2.4	16
7	Binding of p67phoxto Nox2 is stabilized by disulfide bonds between cysteines in the369Cys-Gly-Cys371triad in Nox2 and in p67phox. Journal of Leukocyte Biology, 2018, 104, 1023-1039.	3.3	9
8	The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox. Frontiers in Chemistry, 2015, 3, 3.	3.6	20
9	A Cys-Gly-Cys triad in the dehydrogenase region of Nox2 plays a key role in the interaction with p67 <i>phox</i> . Journal of Leukocyte Biology, 2015, 98, 859-874.	3.3	17
10	Absolute and Relative Activity Values in Assessing the Effect of NADPH Oxidase Inhibitors. Antioxidants and Redox Signaling, 2015, 23, 1250-1251.	5.4	4
11	Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase. Small GTPases, 2014, 5, e27952.	1.6	88
12	Cell-Free NADPH Oxidase Activation Assays: "In Vitro Veritas― Methods in Molecular Biology, 2014, 1124, 339-403.	0.9	25
13	Two CGD Families with a Hypomorphic Mutation in the Activation Domain of p67. Journal of Clinical & Cellular Immunology, 2014, 5, .	1.5	4
14	Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or "All that you did and did not want to know about Nox inhibitory peptides― Cellular and Molecular Life Sciences, 2012, 69, 2283-2305.	5.4	28
15	Rational Design of Small Molecule Inhibitors Targeting the Rac GTPase-p67 Signaling Axis in Inflammation. Chemistry and Biology, 2012, 19, 228-242.	6.0	53
16	G6PC3 mutations are associated with a major defect of glycosylation: a novel mechanism for neutrophil dysfunction. Glycobiology, 2011, 21, 914-924.	2.5	78
17	Inhibition of NADPH oxidase activation by peptides mapping within the dehydrogenase region of Nox2-A "peptide walking―study. Journal of Leukocyte Biology, 2011, 91, 501-515.	3.3	20
18	Editorial: When charge is in charge—"Millikan―for leukocyte biologists. Journal of Leukocyte Biology, 2010, 87, 537-540.	3.3	6

#	Article	IF	CITATIONS
19	A Prenylated p47 -p67 -Rac1 Chimera Is a Quintessential NADPH Oxidase Activator. Journal of Biological Chemistry, 2010, 285, 25485-25499.	3.4	36
20	Dissociation of Rac1(GDP)·RhoGDI Complexes by the Cooperative Action of Anionic Liposomes Containing Phosphatidylinositol 3,4,5-Trisphosphate, Rac Guanine Nucleotide Exchange Factor, and GTP. Journal of Biological Chemistry, 2008, 283, 22257-22271.	3.4	42
21	Tripartite Chimeras Comprising Functional Domains Derived from the Cytosolic NADPH Oxidase Components p47 , p67 , and Rac1 Elicit Activator-independent Superoxide Production by Phagocyte Membranes. Journal of Biological Chemistry, 2007, 282, 22122-22139.	3.4	32
22	Opening the black box: Lessons from cell-free systems on the phagocyte NADPH-oxidase. Biochimie, 2007, 89, 1123-1132.	2.6	43
23	Characterization of Surface Structure and p47phox SH3 Domain-Mediated Conformational Changes for Human Neutrophil Flavocytochrome b. Biochemistry, 2007, 46, 14291-14304.	2.5	12
24	Cell-Free Assays. Methods in Molecular Biology, 2007, 412, 385-428.	0.9	30
25	Bridging the Divide or Deepening It?. Science, 2006, 313, 169c-170c.	12.6	0
26	Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. Journal of Leukocyte Biology, 2006, 79, 881-895.	3.3	59
27	Liposomes Comprising Anionic but Not Neutral Phospholipids Cause Dissociation of Rac(1 or 2)·RhoGDI Complexes and Support Amphiphile-independent NADPH Oxidase Activation by Such Complexes. Journal of Biological Chemistry, 2006, 281, 19204-19219.	3.4	34
28	Activation of the Phagocyte NADPH Oxidase by Rac Guanine Nucleotide Exchange Factors in Conjunction with ATP and Nucleoside Diphosphate Kinase. Journal of Biological Chemistry, 2005, 280, 3802-3811.	3.4	51
29	Gene expression changes by amyloid β peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. Journal of Leukocyte Biology, 2005, 79, 596-610.	3.3	150
30	Dual Role of Rac in the Assembly of NADPH Oxidase, Tethering to the Membrane and Activation of p67. Journal of Biological Chemistry, 2004, 279, 16007-16016.	3.4	123
31	Two pathways of activation of the superoxide-generating NADPH oxidase of phagocytes in vitrodistinctive effects of inhibitors. Inflammation, 2003, 27, 147-159.	3.8	21
32	The Guanine Nucleotide Exchange Factor Trio Activates the Phagocyte NADPH Oxidase in the Absence of GDP to GTP Exchange on Rac. Journal of Biological Chemistry, 2003, 278, 4854-4861.	3.4	25
33	A Prenylated p67 -Rac1 Chimera Elicits NADPH-dependent Superoxide Production by Phagocyte Membranes in the Absence of an Activator and of p47. Journal of Biological Chemistry, 2002, 277, 18605-18610.	3.4	67
34	Mapping of Functional Domains in the p22 Subunit of Flavocytochrome b 559 Participating in the Assembly of the NADPH Oxidase Complex by "Peptide Walking― Journal of Biological Chemistry, 2002, 277, 8421-8432.	3.4	76
35	Mechanism of NADPH Oxidase Activation by the Rac/Rho-GDI Complexâ€. Biochemistry, 2001, 40, 10014-10022.	2.5	82
36	Activation of the Superoxide-Generating NADPH Oxidase by Chimeric Proteins Consisting of Segments of the Cytosolic Component p67phoxand the Small GTPase Rac1†Biochemistry 2001, 40, 14557-14566	2.5	62

#	Article	IF	CITATIONS
37	Medical luminaries. Nature, 2001, 411, 885-885.	27.8	3
38	Science is universal, not part of any religion. Nature, 2001, 414, 249-249.	27.8	2
39	Epitope identification for human neutrophil flavocytochrome b monoclonals 48 and 449. European Journal of Haematology, 2000, 65, 407-413.	2.2	19
40	Targeting of Rac1 to the Phagocyte Membrane Is Sufficient for the Induction of NADPH Oxidase Assembly. Journal of Biological Chemistry, 2000, 275, 40073-40081.	3.4	121
41	Mutational Analysis of Novel Effector Domains in Rac1 Involved in the Activation of Nicotinamide Adenine Dinucleotide Phosphate (Reduced) Oxidaseâ€. Biochemistry, 1998, 37, 7147-7156.	2.5	60
42	Glucosylation and ADP Ribosylation of Rho Proteins:Â Effects on Nucleotide Binding, GTPase Activity, and Effector Couplingâ€. Biochemistry, 1998, 37, 5296-5304.	2.5	201
43	Mapping of Functional Domains in p47 Involved in the Activation of NADPH Oxidase by "Peptide Walking― Journal of Biological Chemistry, 1998, 273, 15435-15444.	3.4	46
44	Inhibition of NADPH Oxidase Activation by 4-(2-Aminoethyl)-benzenesulfonyl Fluoride and Related Compounds. Journal of Biological Chemistry, 1997, 272, 13292-13301.	3.4	181
45	Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1319, 139-146.	1.0	53
46	The Cytosolic Component p47 Is Not a Sine Qua Non Participant in the Activation of NADPH Oxidase but Is Required for Optimal Superoxide Production. Journal of Biological Chemistry, 1996, 271, 30326-30329.	3.4	144
47	" Peptide Walking" Is a Novel Method for Mapping Functional Domains in Proteins. Journal of Biological Chemistry, 1995, 270, 29079-29082.	3.4	60
48	Superoxide production by cytochromeb559. FEBS Letters, 1994, 338, 285-289.	2.8	64
49	Role of the rac1 p21-GDP-dissociation inhibitor for rho heterodimer in the activation of the superoxide-forming NADPH oxidase of macrophages. FEBS Journal, 1993, 217, 441-455.	0.2	48
50	Generation of Superoxide by purified and relipidated cytochromeb559in the absence of cytosolic activators. FEBS Letters, 1993, 327, 57-62.	2.8	96
51	Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature, 1991, 353, 668-670.	27.8	940
52	Activation of the Superoxide-Generating NADPH Oxidase of Macrophages by Sodium Dodecyl Sulfate in a Soluble Cell-Free System: Evidence for Involvement of a G Protein. Journal of Leukocyte Biology, 1990, 48, 107-115.	3.3	25
53	Nucleotide binding properties of cytosolic components required for expression of activity of the superoxide generating NADPH oxidase. BBA - Proteins and Proteomics, 1990, 1037, 405-412.	2.1	24
54	Macrophage-derived superoxide-generating NADPH oxidase in an amphiphile-activated, cell-free system; partial purification of the cytosolic component and evidence that it may contain the NADPH binding site. BBA - Proteins and Proteomics, 1988, 952, 213-219.	2.1	35

#	Article	IF	CITATIONS
55	Characterization of Ca2+-activated phospholipid-dependent protein kinase C / protein kinase m in guinea pig peritoneal exudate macrophages. Biochemical and Biophysical Research Communications, 1986, 141, 605-613.	2.1	5
56	[24] Microassays for superoxide and hydrogen peroxide production and nitroblue tetrazolium reduction using an enzyme immunoassay microplate reader. Methods in Enzymology, 1986, 132, 407-421.	1.0	204
57	Molecular Mechanisms in Lymphokine-Induced Macrophage Activation-Enhanced Production of Oxygen Radicals. , 1986, , 339-351.		0
58	Molecular mechanisms in lymphokine-induced macrophage activation—Enhanced production of oxygen radicals. Clinical Immunology Newsletter, 1985, 6, 145-149.	0.1	4
59	Macrophage Microtubules: An Optimized Method for the Assay of Tubulin Concentration and State of Polymerization in Macrophages. Journal of Leukocyte Biology, 1984, 35, 303-316.	3.3	2
60	Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cellular Immunology, 1984, 88, 213-221.	3.0	362
61	Biochemistry of Lymphokine Action on Macrophages. , 1984, , 335-346.		0
62	Unsaturated fatty acids as second messengers of superoxide generation by macrophages. Cellular Immunology, 1983, 79, 240-252.	3.0	156
63	The mechanism of action of lymphokines VII. Modulation of the action of macrophage migration inhibitory factor by antioxidants and drugs affecting thromboxane synthesis. Immunopharmacology, 1983, 6, 215-229.	2.0	4
64	Biochemical Mechanisms of Macrophage Activation by Lymphokines. , 1983, , 483-487.		0
65	Role of transmethylation in the elicitation of an oxidative burst in macrophages. Cellular Immunology, 1982, 72, 277-285.	3.0	20
66	Extrinsic Regulation of Macrophage Function by Lymphokines — Effect of Lymphokines on the Stimulated Oxidative Metabolism of Macrophages. Advances in Experimental Medicine and Biology, 1982, 155, 471-485.	1.6	5
67	Macrophage-mediated cytolysis of erythrocytes in the guinea pig. Cellular Immunology, 1981, 62, 172-185.	3.0	22
68	Activation of macrophage adenylate cyclase by stimulants of the oxidative burst and by arachidonic acid—Two distinct mechanisms. Cellular Immunology, 1981, 61, 90-103.	3.0	14
69	Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages—Induction by multiple nonphagocytic stimuli. Cellular Immunology, 1981, 59, 301-318.	3.0	452
70	Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Journal of Immunological Methods, 1981, 46, 211-226.	1.4	1,063
71	A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. Journal of Immunological Methods, 1980, 38, 161-170.	1.4	1,107
72	Cyclic GMP metabolism in macrophages. Cellular Immunology, 1980, 52, 73-83.	3.0	25

#	Article	IF	CITATIONS
73	The Mechanism of Action of Soluble Lymphocyte Mediators. International Archives of Allergy and Immunology, 1979, 58, 149-159.	2.1	18
74	Facilitation of adenylate cyclase stimulation in macrophages by lectins. Cellular Immunology, 1979, 45, 415-427.	3.0	13
75	INTRACELLULAR MEDIATION OF LYMPHOKINE ACTION: MIMICRY OF MIGRATION INHIBITORY FACTOR (MIF) ACTION BY PHORBOL MYRISTATE ACETATE (PMA) AND THE IONOPHORE A23187. Annals of the New York Academy of Sciences, 1979, 332, 378-394.	3.8	19
76	Cytoskeletal control of concanavalin A receptor mobility in peritoneal macrophages. Experimental Cell Research, 1979, 118, 151-158.	2.6	21
77	Antigen and Mitogen Induced Production of Macrophage Migration Inhibitory Factor in the Mouse. International Archives of Allergy and Immunology, 1979, 60, 29-43.	2.1	7
78	Mechanism of Action of Migration Inhibitory Lymphokines. , 1979, , 59-119.		5
79	Enhancement of macrophage adenylate cyclase by microtubule disrupting drugs. Immunopharmacology, 1978, 1, 71-82.	2.0	23
80	Nonlymphoid cells interacted with mitogens fail to elaborate macrophage migration inhibitory factor (MIF). Cellular Immunology, 1978, 36, 210-219.	3.0	6
81	The mechanism of action of soluble lymphocyte mediators. Cellular Immunology, 1977, 32, 329-339.	3.0	26
82	The mechanism of action of soluble lymphocyte mediators. Cellular Immunology, 1977, 32, 340-349.	3.0	19
83	A simple method for the production of migration inhibitory factor by concanavalin A-stimulated lymphocytes. Journal of Immunological Methods, 1977, 14, 141-146.	1.4	18
84	Lymphokines: Physiologic Control and Pharmacological Modulation of Their Production and Action. , 1977, , 163-202.		12
85	Does migration inhibitory factor (MIF) act by promoting tubulin polymerization?. Cellular Immunology, 1976, 27, 339.	3.0	6
86	New approaches to the characterization and isolation of migration inhibitory factor (MIF). Cellular Immunology, 1976, 27, 353-354.	3.0	2
87	Participation of immunoglobulin-bearing lymphocytes in the production of macrophage migration inhibitory factor. European Journal of Immunology, 1975, 5, 584-587.	2.9	6
88	The mechanism of action of soluble lymphocytic mediators. Cellular Immunology, 1974, 11, 30-46.	3.0	42
89	Localization of lymphocytes producing macrophage migration inhibitory factor in albumin density gradients. European Journal of Immunology, 1973, 3, 317-319.	2.9	4
90	The Mechanism of Action of Macrophage Migration Inhibitory Factor (MIF). International Archives of Allergy and Immunology, 1973, 45, 295-298.	2.1	11

#	Article	IF	CITATIONS
91	Blocking of Macrophage Migration Inhibitory Factor Action by Microtubular Disruptive Drugs. International Archives of Allergy and Immunology, 1973, 44, 215-220.	2.1	38
92	Cyclic AMP affects Macrophage Migration. Nature: New Biology, 1972, 238, 176-177.	4.5	61
93	Interaction Between â€~Sensitized Lymphocytes' and Antigen <i>in vitro</i> . International Archives of Allergy and Immunology, 1972, 42, 50-68.	2.1	37
94	Release of Skin Reactive Factor from Guinea-pig Lymphocytes by Mitogens. Nature, 1970, 225, 236-238.	27.8	51
95	Interaction between "sensitized lymphocytes―and antigen in vitro. Cellular Immunology, 1970, 1, 92-109.	3.0	98
96	HETEROGENEITY OF ANTIBODY-FORMING CELLS. Journal of Experimental Medicine, 1969, 129, 1029-1044.	8.5	24
97	Vitamin A-induced Rejection of Autografts and Homografts. Nature, 1965, 205, 1022-1022.	27.8	6
98	Fibrin-clot Formation by Extracts of Rabbit-skin Homografts. Nature, 1964, 202, 504-505.	27.8	1
99	Passive Agglutination Tests: Bismuth Tannate Test. Nature, 1963, 197, 157-158.	27.8	5