José GregÃ³rio Cabrera Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9395344/publications.pdf

Version: 2024-02-01

José Gregório Cabrera

#	Article	IF	CITATIONS
1	Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 245-254.	1.4	181
2	Polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 1709-1713.	0.8	100
3	Evaluation of soil gram-negative bacteria yielding polyhydroxyalkanoic acids from carbohydrates and propionic acid. Applied Microbiology and Biotechnology, 1996, 45, 785-791.	1.7	93
4	Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046 from renewable sources. European Polymer Journal, 2003, 39, 1385-1394.	2.6	75
5	Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by <i>Burkholderia</i> sp Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1353-1363.	1.4	65
6	High-Cell-Density Cultivation of <1>Pseudomonas putida 1 IPT 046 and Medium-Chain-Length Polyhydroxyalkanoate Production From Sugarcane Carbohydrates. Applied Biochemistry and Biotechnology, 2004, 119, 51-70.	1.4	61
7	Screening of bacteria to produce polyhydroxyalkanoates from xylose. World Journal of Microbiology and Biotechnology, 2009, 25, 1751-1756.	1.7	53
8	Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. International Journal of Biological Macromolecules, 2014, 71, 2-7.	3.6	53
9	Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp Journal of King Saud University - Science, 2017, 29, 166-173.	1.6	51
10	Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp Journal of Biotechnology, 2000, 76, 165-174.	1.9	48
11	Identification of the 2-Methylcitrate Pathway Involved in the Catabolism of Propionate in the Polyhydroxyalkanoate-Producing Strain Burkholderia sacchari IPT101 T and Analysis of a Mutant Accumulating a Copolyester with Higher 3-Hydroxyvalerate Content. Applied and Environmental Microbiology, 2002, 68, 271-279.	1.4	48
12	PHAMCL biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas putida strains show differences on monomer specificities. Journal of Biotechnology, 2009, 143, 111-118.	1.9	43
13	Exploring the potential of <i>Burkholderia sacchari</i> to produce polyhydroxyalkanoates. Journal of Applied Microbiology, 2014, 116, 815-829.	1.4	43
14	PHB Biosynthesis in Catabolite Repression Mutant of Burkholderia sacchari. Current Microbiology, 2011, 63, 319-326.	1.0	32
15	Increasing PHB production with an industrially scalable hardwood hydrolysate as a carbon source. Industrial Crops and Products, 2020, 154, 112703.	2.5	32
16	Poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) production from biodiesel byâ€product and propionic acid by mutant strains of <i>Pandoraea</i> sp Biotechnology Progress, 2017, 33, 1077-1084.	1.3	31
17	Polycaprolactone based biodegradable polyurethanes. Macromolecular Symposia, 2003, 197, 255-264.	0.4	29
18	Produção biotecnológica de poli-hidroxialcanoatos para a geração de polÃmeros biodegradáveis no Brasil. Quimica Nova, 2007, 30, 1732-1743.	0.3	29

#	Article	IF	CITATIONS
19	Application of rhamnolipid surfactant for remediation of toxic metals of long- and short-term contamination sites. International Journal of Environmental Science and Technology, 2021, 18, 575-588.	1.8	29
20	Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by Burkholderia sacchari LMG 19450 From Xylose as the Sole Carbon Source. Frontiers in Bioengineering and Biotechnology, 2019, 7, 416.	2.0	27
21	Biodegradation of Coir and Sisal Applied in the Automotive Industry. Journal of Polymers and the Environment, 2011, 19, 677-688.	2.4	26
22	Comparison of monoâ€rhamnolipids and diâ€rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Biotechnology Progress, 2020, 36, e2981.	1.3	26
23	<i>xylA</i> and <i>xylB</i> overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in <i>Burkholderia sacchari</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 165-173.	1.4	21
24	Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate- co) Tj ETQq0 0 0 rgBT /Overl Journal of Biological Macromolecules, 2017, 98, 654-663.	ock 10 Tf 3.6	50 547 Td (20
25	Cloning and overexpression of the xylose isomerase gene from <i>Burkholderia sacchari</i> and production of polyhydroxybutyrate from xylose. Canadian Journal of Microbiology, 2009, 55, 1012-1015.	0.8	17
26	The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations. Applied and Environmental Microbiology, 2016, 82, 244-254.	1.4	17
27	Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari. Microbial Cell Factories, 2018, 17, 74.	1.9	17
28	Burkholderia glumae MA13: A newly isolated bacterial strain suitable for polyhydroxyalkanoate production from crude glycerol. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101268.	1.5	17
29	Quantifying NAD(P)H production in the upper Entner–Doudoroff pathway from <i>Pseudomonas putida</i> KT2440. FEBS Open Bio, 2015, 5, 908-915.	1.0	15
30	Synthesis of biodegradable polyhydroxyalcanoate copolymer from a renewable source by alternate feeding. Polymer Engineering and Science, 2008, 48, 2051-2059.	1.5	14
31	Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. Bioresource Technology, 2021, 337, 125472.	4.8	14
32	Growth of Burkholderia sacchari LFM 101 cultivated in glucose, sucrose and glycerol at different temperatures. Scientia Agricola, 2016, 73, 429-433.	0.6	12
33	A non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. International Journal of Biological Macromolecules, 2018, 114, 512-519.	3.6	12
34	Draft Genome Sequence of the Polyhydroxyalkanoate-Producing Bacterium Burkholderia sacchari LMG 19450 Isolated from Brazilian Sugarcane Plantation Soil. Genome Announcements, 2015, 3, .	0.8	10
35	Draft Genome Sequence of <i>Pseudomonas</i> sp. Strain LFM046, a Producer of Medium-Chain-Length Polyhydroxyalkanoate. Genome Announcements, 2015, 3, .	0.8	9
36	Exploiting Cheese Whey as Co-substrate for Polyhydroxyalkanoates Synthesis from Burkholderia sacchari and as Raw Material for the Development of Biofilms. Waste and Biomass Valorization, 2019, 10, 1609-1616.	1.8	9

JOSé GREGÃ³RIO CABRERA

#	Article	IF	CITATIONS
37	Metabolic pathways analysis in PHAs production by Pseudomonas with 13C-labeling experiments. Computer Aided Chemical Engineering, 2013, 32, 121-126.	0.3	8
38	Influence of Encapsulated Nanodiamond Dispersion on P(3HB) Biocomposites Properties. Materials Research, 2017, 20, 768-774.	0.6	8
39	The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. International Journal of Biological Macromolecules, 2020, 163, 240-250.	3.6	8
40	A suitable procedure to choose antimicrobials as controlling agents in fermentations performed by bacteria. Brazilian Journal of Microbiology, 2000, 31, .	0.8	8
41	Thermo-Mechanical Properties of P(HB-HV) Nanocomposites Reinforced by Nanodiamonds. Materials Research, 2017, 20, 167-173.	0.6	7
42	Disruption of the 2-methylcitric acid cycle and evaluation of poly-3-hydroxybutyrate-co-3-hydroxyvalerate biosynthesis suggest alternate catabolic pathways of propionate inBurkholderia sacchari. Canadian Journal of Microbiology, 2009, 55, 688-697.	0.8	6
43	Role of <i>CcpA</i> in Polyhydroxybutyrate Biosynthesis in a Newly Isolated <i>Bacillus</i> sp. MA3.3. Journal of Molecular Microbiology and Biotechnology, 2011, 20, 63-69.	1.0	5
44	Influence of pH on the Molecular Weight of Poly-3-hydroxybutyric Acid (P3HB) Produced by Recombinant Escherichia coli. Applied Biochemistry and Biotechnology, 2013, 170, 1336-1347.	1.4	5
45	Carriers based on poly-3-hydroxyalkanoates containing nanomagnetite to trigger hormone release. International Journal of Biological Macromolecules, 2021, 166, 448-458.	3.6	5
46	Exposure of Deinococcus radiodurans to both static magnetic fields and gamma radiation: observation of cell recuperation effects. Journal of Biological Physics, 2020, 46, 309-324.	0.7	4
47	Glucose metabolism in Pseudomonas aeruginosa is cyclic when producing Polyhydroxyalkanoates and Rhamnolipids. Journal of Biotechnology, 2021, 342, 54-63.	1.9	4
48	Draft Genome Sequence of <i>Halomonas</i> sp. HG01, a Polyhydroxyalkanoate-Accumulating Strain Isolated from Peru. Genome Announcements, 2016, 4, .	0.8	3
49	Biosynthesis and characterization of biodegradable Poly(3-hydroxybutyrate) from renewable sources. Revista Materia, 2008, 13, 1-11.	0.1	2
50	Identifiability of metabolic flux ratios on carbon labeling experiments. Computer Aided Chemical Engineering, 2021, 50, 1983-1989.	0.3	2
51	Techno-economic feasibility of P(3-hydroxybutyrate) bioprocess with concentrated sugarcane vinasse as carbon and minerals source: an experimental and in silico approach. Biomass Conversion and Biorefinery, 2024, 14, 2071-2089.	2.9	2
52	Antibiofilm effect of monoâ€rhamnolipids and diâ€rhamnolipids on carbon steel submitted to oil produced water. Biotechnology Progress, 2021, 37, e3131.	1.3	1
53	Analysis of bioreactor experimental data by the application of metabolic pathway stoichiometry to polyhydroxyalkanoate production by Alcaligenes Eutrophus. Brazilian Journal of Chemical Engineering, 1999, 16, 199-204.	0.7	1
54	Production of Polyhydroxyalkanoates Copolymers by Recombinant <i>Pseudomonas</i> in Plasmid- and Antibiotic-Free Cultures. Journal of Molecular Microbiology and Biotechnology, 2018, 28, 225-235.	1.0	0