
David Avigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9395340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase 1 study of CART-ddBCMA for the treatment of subjects with relapsed and refractory multiple myeloma. Blood Advances, 2023, 7, 768-777.	2.5	15
2	Ciltacabtagene Autoleucel, an Anti–B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. Journal of Clinical Oncology, 2023, 41, 1265-1274.	0.8	160
3	GM-CSF secreting leukemia cell vaccination for MDS/AML after allogeneic HSCT: a randomized, double-blinded, phase 2 trial. Blood Advances, 2022, 6, 2183-2194.	2.5	12
4	Phase 1 study of CART-ddBCMA in relapsed or refractory multiple myeloma Journal of Clinical Oncology, 2022, 40, 8003-8003.	0.8	4
5	Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Slows DLBCL Tumor Cell Growth <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2021, 27, 1139-1149.	3.2	76
6	Neoantigenâ€based vaccines as a promising strategy in cancer immunotherapeutics. Immunomedicine, 2021, 1, e1021.	0.7	1
7	Vaccination as Immunotherapy in Hematologic Malignancies. Journal of Clinical Oncology, 2021, 39, 433-443.	0.8	8
8	Leukemia vaccine overcomes limitations of checkpoint blockade by evoking clonal T cell responses in a murine acute myeloid leukemia model. Haematologica, 2021, 106, 1330-1342.	1.7	19
9	Phase 1 Study of CART-ddBCMA, a CAR-T therapy utilizing a novel synthetic binding domain, for the treatment of subjects with relapsed and refractory multiple myeloma Journal of Clinical Oncology, 2021, 39, 8015-8015.	0.8	6
10	Therapeutic dendritic cell cancer vaccines in hematologic malignancies. Immunomedicine, 2021, 1, e1022.	0.7	0
11	Vaccination for cancer: Myth or reality. Immunomedicine, 2021, 1, e1026.	0.7	0
12	Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet, The, 2021, 398, 314-324.	6.3	711
13	Progressive Multifocal Leukoencephalopathy After Chimeric Antigen Receptor T-Cell Therapy for Recurrent Non-Hodgkin Lymphoma. Journal of Hematology (Brossard, Quebec), 2021, 10, 212-216.	0.4	2
14	Profiling the Peripheral Blood Immune Cell Repertoire in Large-B Cell Lymphoma Patients Treated with CD19 CAR-T. Blood, 2021, 138, 2786-2786.	0.6	1
15	Treatment with DC/AML Fusion Vaccine and CD3xCD123 Bi-Specific T-Cell Engager (CD123-CODV-TCE) for Treatment of Acute Myeloid Leukemia. Blood, 2021, 138, 904-904.	0.6	0
16	Phase II Clinical Trial of Abatacept for Steroid-Refractory Chronic Graft Versus Host Disease. Blood, 2021, 138, 264-264.	0.6	3
17	Characterization of T-Cell Exhaustion in Rapid Progressing Multiple Myeloma Using Cross Center Scrna-Seq Study. Blood, 2021, 138, 401-401.	0.6	1
18	Updated Results from CARTITUDE-1: Phase 1b/2Study of Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy, in Patients With Relapsed/Refractory Multiple Myeloma. Blood, 2021, 138, 549-549.	0.6	36

#	Article	IF	CITATIONS
19	Post-Transplant Vaccination with a Personalized Dendritic Cell/AML Fusion Cell Vaccine for Prevention of Relapse. Blood, 2021, 138, 2830-2830.	0.6	1
20	Fc Receptor-Dependent Trogocytosis of CD39 Impacts Engraftment and Invasiveness of Acute Myeloid Leukemia Cells. Blood, 2021, 138, 3298-3298.	0.6	1
21	Single-Cell RNA-Seq Analysis of CD138-Depleted Bone Marrow Samples Reveals Genetic Alterations and Disease Progression Correlate with Tumor and Bone Marrow Immune Microenvironment in the Mmrf Commpass Study. Blood, 2021, 138, 2691-2691.	0.6	0
22	Synergism between CAR-T Cells and a Personalized Tumor Vaccine in Hematological Malignances. Blood, 2021, 138, 737-737.	0.6	0
23	A Phase 2 Study of Extended Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone in Newly Diagnosed Multiple Myeloma. Blood, 2021, 138, 2759-2759.	0.6	2
24	Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Science Translational Medicine, 2021, 13, eabh1962.	5.8	49
25	A phase II study of reduced intensity double umbilical cord blood transplantation using fludarabine, melphalan, and low dose total body irradiation. Bone Marrow Transplantation, 2020, 55, 804-810.	1.3	3
26	Endogenous thrombopoietin levels are elevated following double cord blood unit transplantation. Bone Marrow Transplantation, 2020, 55, 1178-1180.	1.3	2
27	Alisertib plus induction chemotherapy in previously untreated patients with high-risk, acute myeloid leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e122-e133.	2.2	19
28	A multicenter phase 1 study of nivolumab for relapsed hematologic malignancies after allogeneic transplantation. Blood, 2020, 135, 2182-2191.	0.6	62
29	Summary of the 2019 Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling. Biology of Blood and Marrow Transplantation, 2020, 26, e247-e255.	2.0	5
30	Epsteinâ^'Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia, 2019, 33, 132-147.	3.3	126
31	Brentuximab vedotin, doxorubicin, vinblastine, and dacarbazine for nonbulky limited-stage classical Hodgkin lymphoma. Blood, 2019, 134, 606-613.	0.6	41
32	Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy. Cell Research, 2019, 29, 446-459.	5.7	32
33	Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. British Journal of Haematology, 2019, 185, 679-690.	1.2	52
34	Anti-myeloma activity and molecular logic operation by Natural Killer cells in microfluidic droplets. Sensors and Actuators B: Chemical, 2019, 282, 580-589.	4.0	14
35	The myeloma-developing regimens using genomics (MyDRUG) master protocol Journal of Clinical Oncology, 2019, 37, TPS8057-TPS8057.	0.8	7
36	Anti-cancer vaccine therapy for hematologic malignancies: An evolving era. Blood Reviews, 2018, 32, 312-325.	2.8	19

#	Article	IF	CITATIONS
37	Possible reactivation of chromosomally integrated human herpesvirus 6 after treatment with histone deacetylase inhibitor. Blood Advances, 2018, 2, 1367-1370.	2.5	13
38	Prevention and treatment of relapse after stem cell transplantation with immunotherapy. Bone Marrow Transplantation, 2018, 53, 664-672.	1.3	11
39	MUC1-C drives myeloid leukaemogenesis and resistance to treatment by a survivin-mediated mechanism. Journal of Cellular and Molecular Medicine, 2018, 22, 3887-3898.	1.6	12
40	Cellular immunotherapy as a therapeutic approach in multiple myeloma. Expert Review of Hematology, 2018, 11, 525-536.	1.0	6
41	Vaccine therapy in hematologic malignancies. Blood, 2018, 131, 2640-2650.	0.6	41
42	MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood, 2017, 129, 1791-1801.	0.6	130
43	Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein <scp>MUC</scp> 1. British Journal of Haematology, 2017, 176, 929-938.	1.2	34
44	Dendritic Cell Therapies for Hematologic Malignancies. Molecular Therapy - Methods and Clinical Development, 2017, 5, 66-75.	1.8	50
45	Targeting the PD-1/PD-L1 axis in multiple myeloma: a dream or a reality?. Blood, 2017, 129, 275-279.	0.6	85
46	Lack of impact of umbilical cord blood unit processing techniques on clinical outcomes in adult double cord blood transplant recipients. Cytotherapy, 2017, 19, 272-284.	0.3	13
47	Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Molecular Cancer Therapeutics, 2017, 16, 2304-2314.	1.9	10
48	<scp>MUC</scp> 1 is a target in lenalidomide resistant multiple myeloma. British Journal of Haematology, 2017, 178, 914-926.	1.2	20
49	Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma. Oncotarget, 2017, 8, 69237-69249.	0.8	8
50	Persistence of dysphagia and odynophagia after mediastinal radiation and chemotherapy in patients with lung cancer or lymphoma. Ecological Management and Restoration, 2016, 30, 1-8.	0.2	1
51	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. , 2016, 4, 90.		17
52	Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Science Translational Medicine, 2016, 8, 368ra171.	5.8	140
53	MUC1-C drives MYC in multiple myeloma. Blood, 2016, 127, 2587-2597.	0.6	71
54	Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. Journal of Clinical Oncology, 2016, 34, 2698-2704.	0.8	868

#	Article	IF	CITATIONS
55	Challenges in vaccine therapy in hematological malignancies and strategies to overcome them. Expert Opinion on Biological Therapy, 2016, 16, 1093-1104.	1.4	3
56	MUC1 in hematological malignancies. Leukemia and Lymphoma, 2016, 57, 2489-2498.	0.6	22
57	Pembrolizumab in combination with lenalidomide and low-dose dexamethasone for relapsed/refractory multiple myeloma (RRMM): Final efficacy and safety analysis Journal of Clinical Oncology, 2016, 34, 8010-8010.	0.8	39
58	A combination of an anti-SLAMF6 antibody and ibrutinib efficiently abrogates expansion of chronic lymphocytic leukemia cells. Oncotarget, 2016, 7, 26346-26360.	0.8	12
59	MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget, 2016, 7, 38974-38987.	0.8	36
60	Mucin 1 is a potential therapeutic target in cutaneous T-cell lymphoma. Blood, 2015, 126, 354-362.	0.6	31
61	Role of Immune Therapies for Myeloma. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 1440-1447.	2.3	4
62	Immunotherapy for Multiple Myeloma, Past, Present, and Future: Monoclonal Antibodies, Vaccines, and Cellular Therapies. Current Hematologic Malignancy Reports, 2015, 10, 395-404.	1.2	13
63	First Interim Results of a Phase I/II Study of Lenalidomide in Combination with Anti-PD-1 Monoclonal Antibody MDV9300 (CT-011) in Patients with Relapsed/Refractory Multiple Myeloma. Blood, 2015, 126, 1838-1838.	0.6	11
64	MUC1 Inhibition Overcomes Chemotherapy Resistance in Acute Myeloid Leukemia. Blood, 2015, 126, 2473-2473.	0.6	2
65	DC/Aml Fusion Cell Vaccination Administered to AML Patients Who Achieve a Complete Remission Potently Expands Leukemia Reactive T Cells and Is Associated with Durable Remissions. Blood, 2015, 126, 2549-2549.	0.6	5
66	Blockade of PD-1 in Combination with Dendritic Cell/Myeloma Fusion Cell Vaccination Following Autologous Stem Cell Transplantation Is Well Tolerated, Induces Anti-Tumor Immunity and May Lead to Eradication of Measureable Disease. Blood, 2015, 126, 4218-4218.	0.6	10
67	Pembrolizumab in Combination with Lenalidomide and Low-Dose Dexamethasone for Relapsed/Refractory Multiple Myeloma (RRMM): Keynote-023. Blood, 2015, 126, 505-505.	0.6	67
68	A Multicenter Phase II Study Using a Dose Intensified Pegylated-Asparaginase Pediatric Regimen in Adults with Untreated Acute Lymphoblastic Leukemia: A DFCI ALL Consortium Trial. Blood, 2015, 126, 80-80.	0.6	38
69	A Multicenter Phase I/Ib Study of Ipilimumab for Relapsed Hematologic Malignancies after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2015, 126, 860-860.	0.6	5
70	Brentuximab vedotin plus AVD for non-bulky limited stage Hodgkin lymphoma: A phase II trial Journal of Clinical Oncology, 2015, 33, 8505-8505.	0.8	11
71	MUC-1 Regulates MiR34a Expression in Acute Myeloid Leukemia Cells Resulting in an Accumulation of Granulocytic Myeloid-Derived Suppressor Cells. Blood, 2015, 126, 643-643.	0.6	0
72	Immunomodulatory Effect of MUC1-C in Acute Myeloid Leukemia. Blood, 2015, 126, 3659-3659.	0.6	0

#	Article	IF	CITATIONS
73	A Phase 1 Study of Lenalidomide in Combination with Mitoxantrone, Etoposide, and Ara-C in Patients with Relapsed or Refractory Acute Myeloid Leukemia. Blood, 2015, 126, 2550-2550.	0.6	0
74	Pure Red Cell Aplasia after ABO-Mismatched Allogeneic Stem Cell Transplantation Treated with Therapeutic Plasma Exchange and Rituximab. Blood, 2015, 126, 5453-5453.	0.6	1
75	Dendritic Cell Cancer Vaccines: From the Bench to the Bedside. Rambam Maimonides Medical Journal, 2014, 5, e0024.	0.4	11
76	Current Treatment for Multiple Myeloma. New England Journal of Medicine, 2014, 371, 961-962.	13.9	26
77	Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation IsÂAssociated with Selective Control of JC VirusÂReactivation. Biology of Blood and Marrow Transplantation, 2014, 20, 992-999.	2.0	16
78	Mucin-1 (MUC1) Oncoprotein in Multiple Myeloma Cells Inhibits the Th1 Responses By Down Regulating the Expression of Mir-200c and up-Regulating the PDL1 Expression. Blood, 2014, 124, 2072-2072.	0.6	3
79	Preliminary Results of a Phase I Study of Nivolumab (BMS-936558) in Patients with Relapsed or Refractory Lymphoid Malignancies. Blood, 2014, 124, 291-291.	0.6	92
80	A Multicenter Phase I Study of CTLA-4 Blockade with Ipilimumab for Relapsed Hematologic Malignancies after Allogeneic Hematopoietic Cell Transplantation. Blood, 2014, 124, 3964-3964.	0.6	15
81	Low-Dose Interleukin-2 for Steroid-Refractory Chronic Graft-VsHost Disease: Phase 2 and Long Term Efficacy, Safety and Immune Correlates. Blood, 2014, 124, 41-41.	0.6	1
82	Initial Results of a Phase 1/2a, Dose Escalation Study of PVX-410 Multi-Peptide Cancer Vaccine in Patients with Smoldering Multiple Myeloma (SMM). Blood, 2014, 124, 4737-4737.	0.6	3
83	MUC1 As a Potential Therapeutic Target in Cutaneous T-Cell Lymphoma. Blood, 2014, 124, 808-808.	0.6	0
84	Immunomodulatory Effect of SGI-110, a Novel Hypomethylating Agent in Acute Myeloid Leukemia (AML). Blood, 2014, 124, 2303-2303.	0.6	0
85	Delayed Platelet Engraftment after Umbilical Cord Blood Transplant: Relationship to Circulating Levels of Thrombopoietin. Blood, 2014, 124, 3862-3862.	0.6	0
86	Myeloid-Derived Suppressor Cells Are Expanded in Patients with AML and Are Dependent on MUC1 Expression. Blood, 2014, 124, 226-226.	0.6	0
87	Bone Marrow Stroma Protects Myeloma Cells from Cytotoxic Damage Via Induction of the Oncoprotein MUC1. Blood, 2014, 124, 3378-3378.	0.6	0
88	Vaccination with Dendritic Cell/Tumor Fusions following Autologous Stem Cell Transplant Induces Immunologic and Clinical Responses in Multiple Myeloma Patients. Clinical Cancer Research, 2013, 19, 3640-3648.	3.2	199
89	Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunology, Immunotherapy, 2013, 62, 39-49.	2.0	149
90	MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells. Cancer Research, 2013, 73, 5569-5579.	0.4	49

#	Article	IF	CITATIONS
91	Clinical Trial Evaluating DC/AML Fusion Cell Vaccination In AML Patients. Blood, 2013, 122, 3928-3928.	0.6	7
92	Impact Of Umbilical Cord Unit Banking Conditions On Clinical Outcomes In Double Cord Transplant Recipients. Blood, 2013, 122, 695-695.	0.6	3
93	STAT3 Inhibition Promotes Potent Th1 Responses By Down Regulating Pdl-1 Expression On Tumor Cells. Blood, 2013, 122, 3217-3217.	0.6	0
94	Co-Expression Of The MUC1 Oncoprotein and CD34 On Primary Myeloma Bone Marrow Cells Identifies a Population With Myeloma Initiating Potential. Blood, 2013, 122, 127-127.	0.6	0
95	Dendritic/Tumor Fusion Cells as Cancer Vaccines. Seminars in Oncology, 2012, 39, 287-295.	0.8	35
96	A Phase I Trial of Escalating Dose of the Rapamycin Analog Everolimus in Combination with the Kinase Inhibitor Midostaurin in Patients (pts) with Relapsed, Refractory or Poor Prognosis Acute Myeloid Leukemia (AML). Blood, 2012, 120, 3627-3627.	0.6	4
97	Blockade of PD-1 in Combination with Dendritic Cell/Myeloma Fusion Cell Vaccination Following Autologous Stem Cell Transplantation. Blood, 2012, 120, 578-578.	0.6	3
98	Targeting Leukemia Initiating Cells by MUC1-C Subunit Inhibition. Blood, 2012, 120, 3583-3583.	0.6	0
99	A PML–PPAR-δ Pathway for Fatty Acid Oxidation Regulates Hematopoietic Stem Cell Maintenance Through the Control of Asymmetric Division Blood, 2012, 120, 2327-2327.	0.6	5
100	Transduction of Malignant Plasma Cells with Three Costimulatory Molecules (TRICOM) Elicits Myeloma-Specific Immune Response in Vitro – a Promising Strategy for Immunotherapy. Blood, 2012, 120, 1908-1908.	0.6	35
101	Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood, 2011, 117, 393-402.	0.6	199
102	PD-1 Blockade by CT-011, Anti-PD-1 Antibody, Enhances Ex Vivo T-cell Responses to Autologous Dendritic Cell/Myeloma Fusion Vaccine. Journal of Immunotherapy, 2011, 34, 409-418.	1.2	270
103	BT062, An Antibody-Drug Conjugate Directed Against CD138, Shows Clinical Activity in Patients with Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2011, 118, 305-305.	0.6	30
104	Safety and Tolerability of Plerixafor in Combination with Cytarabine and Daunorubicin in Patients with Newly Diagnosed Acute Myeloid Leukemia- Preliminary Results From a Phase I Study. Blood, 2011, 118, 82-82.	0.6	16
105	Clinical Trial Evaluating DC/AML Fusion Cell Vaccination Alone and in Conjunction with PD-1 Blockade in AML Patients Who Achieve a Chemotherapy-Induced Remission. Blood, 2011, 118, 948-948.	0.6	3
106	MUC1 Inhibition Reverses the Poor Immunogenicity of Leukemia Stem Cells Rendering Them Susceptible to Immunotherapy. Blood, 2011, 118, 1883-1883.	0.6	0
107	Addition of Clofarabine to TLI/ATG Conditioning: Impact on Immune Reconstitution and Clinical Outcomes,. Blood, 2011, 118, 4066-4066.	0.6	0
108	Low Levels of 25-Hydroxyvitamin D Prior to Allogeneic Transplantation Correlate with the Development of Chronic Graft-Versus-Host Disease,. Blood, 2011, 118, 4063-4063.	0.6	0

#	Article	IF	CITATIONS
109	Adoptive T Cell Therapy for Progressive Multifocal Leukoencephalopathy Using Sequential Ex-Vivo Stimulation with JCV Peptide Pulsed Dendritic Cells and Anti-CD3/CD28. Blood, 2011, 118, 2175-2175.	0.6	0
110	Generation of Tumor-specific T Lymphocytes Using Dendritic Cell/Tumor Fusions and Anti-CD3/CD28. Journal of Immunotherapy, 2010, 33, 155-166.	1.2	30
111	Cancer vaccines in hematologic malignancies: advances, challenges and therapeutic potential. Expert Review of Vaccines, 2010, 9, 451-454.	2.0	1
112	BT062, An Antibody-Drug Conjugate Directed Against CD138, Shows Clinical Activity In a Phase I Study In Patients with Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2010, 116, 3060-3060.	0.6	5
113	Lenalidomide Decreases PD-1 Expression, Depletes Regulatory T-Cells and Improves Cellular Response to a Multiple Myeloma/Dendritic Cell Fusion Vaccine In Vitro. Blood, 2010, 116, 492-492.	0.6	13
114	Targeting Acute Myeloid Leukemia Stem Cells by MUC1-C Subunit Inhibition. Blood, 2010, 116, 848-848.	0.6	1
115	Defibrotide (DF) In the Treatment of Severe Hepatic Veno-Occlusive Disease (VOD) with Multi-Organ Failure (MOF): Results of a Treatment IND Expanded Access Protocol. Blood, 2010, 116, 906-906.	0.6	3
116	90Y-Ibritumomab Tiuxetan Followed by Rituximab Is a Safe Treatment Option for Relapsed or Refractory Diffuse Large B-Cell Non-Hodgkin s Lymphoma. Blood, 2010, 116, 2866-2866.	0.6	1
117	Phase I Study of BT062 Given as Repeated Single Dose Once Every 3 Weeks in Patients with Relapsed or Relapsed/Refractory Multiple Myeloma Blood, 2009, 114, 1862-1862.	0.6	16
118	CT-011, Anti-PD-1 Antibody, Enhances Ex-Vivo T Cell Responses to Autologous Dendritic/Myeloma Fusion Vaccine Developed for the Treatment of Multiple Myeloma Blood, 2009, 114, 781-781.	0.6	2
119	The Humanized Anti PD-1 Antibody, CT-011, Increases Specific CD4+ Effector/Memory and Memory T Lymphocytes in Patients with Diffuse Large B Cell Lymphoma (DLBCL) Following Autologous Stem Cell Transplantation (AuSCT) Blood, 2009, 114, 1216-1216.	0.6	0
120	Dendritic Cell Tumor Fusion Vaccination in Conjunction with Autologous Transplantation for Multiple Myeloma Blood, 2009, 114, 783-783.	0.6	2
121	A Comparative Analysis of Immune Reconstitution Following Reduced Intensity Conditioning with CAMPATH-1H and Total Lymphoid Irradiation/Anti-Thymocyte Globulin Prior to Allogeneic Stem Cell Transplantation Blood, 2009, 114, 1148-1148.	0.6	0
122	Cellular immunotherapy for multiple myeloma. Best Practice and Research in Clinical Haematology, 2008, 21, 559-577.	0.7	18
123	Vaccine therapy and adoptive immunotherapy in hematologic malignancies. Best Practice and Research in Clinical Haematology, 2008, 21, 373-374.	0.7	1
124	Fusions of Dendritic Cells with Breast Carcinoma Stimulate the Expansion of Regulatory T Cells while Concomitant Exposure to IL-12, CpG Oligodeoxynucleotides, and Anti-CD3/CD28 Promotes the Expansion of Activated Tumor Reactive Cells. Journal of Immunology, 2008, 181, 808-821.	0.4	49
125	Lenalidomide, Bortezomib, and Dexamethasone in Patients with Newly Diagnosed Multiple Myeloma: Encouraging Efficacy in High Risk Groups with Updated Results of a Phase I/II Study. Blood, 2008, 112, 92-92.	0.6	34
126	Lenalidomide, Bortezomib, and Dexamethasone (Rev/Vel/Dex) as Front-Line Therapy for Patients with Multiple Myeloma (MM): Preliminary Results of a Phase 1/2 Study Blood, 2007, 110, 187-187.	0.6	10

#	Article	IF	CITATIONS
127	Phase I Study of Vaccination with Dendritic Cell Myeloma Fusions Blood, 2007, 110, 284-284.	0.6	2
128	Vaccination with DC/Multiple Myeloma Fusions in Conjunction with Stem Cell Transplantation Blood, 2007, 110, 578-578.	0.6	19
129	Targeting MUC1 as a Marker for Myeloid Leukemia Stem Cells by DC/AML Fusions Blood, 2007, 110, 1794-1794.	0.6	0
130	Can leukemia-derived dendritic cells generate antileukemia immunity?. Expert Review of Vaccines, 2006, 5, 467-472.	2.0	10
131	Stimulation of Anti-Tumor Immunity Using Dendritic Cell/Tumor Fusions and Anti-CD3/CD28 Blood, 2006, 108, 3715-3715.	0.6	0
132	Stimulation of Anti-Tumor Immunity Using Dendritic Cells Transduced with Fowl Pox Vector Expressing MUC-1 and Costimulatory Molecules (PANVAC-F) Blood, 2006, 108, 5209-5209.	0.6	0
133	Fusion of dendritic cells with multiple myeloma cells results in maturation and enhanced antigen presentation. British Journal of Haematology, 2005, 129, 687-700.	1.2	65
134	Dendritic cell fusion vaccines for cancer immunotherapy. Expert Opinion on Biological Therapy, 2005, 5, 703-715.	1.4	41
135	Parathyroid Hormone May Improve Autologous Stem Cell Mobilization Via the Stem Cell Niche Blood, 2005, 106, 1968-1968.	0.6	2
136	Leukemia Derived Dendritic Cells (LDCs) Are Functionally Deficient and Inferior to DC/Leukemia Fusion Cells as a Tumor Vaccine for AML Blood, 2005, 106, 2788-2788.	0.6	0
137	Advances in the development of a therapeutic cancer vaccine. Journal of the National Comprehensive Cancer Network: JNCCN, 2005, 3 Suppl 1, S2-6.	2.3	0
138	Fusion Cell Vaccination of Patients with Metastatic Breast and Renal Cancer Induces Immunological and Clinical Responses. Clinical Cancer Research, 2004, 10, 4699-4708.	3.2	227
139	Dendritic Cell-Tumor Fusion Vaccines for Renal Cell Carcinoma. Clinical Cancer Research, 2004, 10, 6347S-6352S.	3.2	50
140	Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. British Journal of Haematology, 2004, 125, 343-352.	1.2	74
141	Induction of anti-leukemic cytotoxic T lymphocytes by fusion of patient-derived dendritic cells with autologous myeloblasts. Leukemia Research, 2004, 28, 1303-1312.	0.4	38
142	Dendritic Cell Myeloma Fusions Stimulate Anti-Tumor Immunity: Results from Pre-Clinical Studies and a Clinical Trial Blood, 2004, 104, 751-751.	0.6	3
143	CALGB 90003: Adoptive Immunotherapy by Allogeneic Stem Cell Transplantation for Metastatic Renal Cell Carcinoma: An Intergroup Phase II Study Blood, 2004, 104, 810-810.	0.6	5
144	Fusions of Breast Cancer and Dendritic Cells as a Novel Cancer Vaccine. Clinical Breast Cancer, 2003, 3, S158-S163.	1.1	16

#	Article	IF	CITATIONS
145	Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12. Blood, 2002, 99, 2512-2517.	0.6	120
146	Fusions of Human Ovarian Carcinoma Cells with Autologous or Allogeneic Dendritic Cells Induce Antitumor Immunity. Journal of Immunology, 2000, 165, 1705-1711.	0.4	211
147	Neutropenic enterocolitis as a complication of high dose chemotherapy with stem cell rescue in patients with solid tumors. , 1998, 83, 409-414.		37
148	Neutropenic enterocolitis as a complication of high dose chemotherapy with stem cell rescue in patients with solid tumors. , 1998, 83, 409.		1