Tamar Tchkonia

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9394945/tamar-tchkonia-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 148 19,353 139 h-index g-index citations papers 160 8.9 24,919 7.02 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
148	Senescence in obesity: causes and consequences 2022 , 289-308		O
147	Senolytic Therapy to Modulate the Progression of Alzheimerß Disease (SToMP-AD): A Pilot Clinical Trial <i>journal of prevention of Alzheimerh disease, The</i> , 2022 , 9, 22-29	3.8	6
146	Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach <i>Journal of Acquired Immune Deficiency Syndromes (1999)</i> , 2022 , 89, S34-S46	3.1	1
145	Selective kidney targeting increases the efficacy of mesenchymal stromal/stem cells for alleviation of murine stenotic-kidney senescence and damage <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2022 ,	4.4	1
144	Orally-active, clinically-translatable senolytics restore EKlotho in mice and humans <i>EBioMedicine</i> , 2022 , 103912	8.8	1
143	Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity <i>Aging Cell</i> , 2022 , e13602	9.9	3
142	Palmitate induces DNA damage and senescence in human adipocytes in vitro that can be alleviated by oleic acid but not inorganic nitrate <i>Experimental Gerontology</i> , 2022 , 163, 111798	4.5	1
141	Selective Vulnerability of Senescent Glioblastoma Cells to Bcl-XL Inhibition <i>Molecular Cancer Research</i> , 2022 ,	6.6	4
140	Obesity, Senescence, and Senolytics. <i>Handbook of Experimental Pharmacology</i> , 2021 , 1	3.2	1
139	Role of senescence in the chronic health consequences of COVID-19. <i>Translational Research</i> , 2021 ,	11	3
138	miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. <i>GeroScience</i> , 2021 , 1	8.9	1
137	Targeting p21 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. <i>Cell Metabolism</i> , 2021 ,	24.6	6
136	An inducible -Cre mouse model to monitor and manipulate -highly-expressing senescent cells <i>Nature Aging</i> , 2021 , 1, 962-973		9
135	Strategies for late phase preclinical and early clinical trials of senolytics. <i>Mechanisms of Ageing and Development</i> , 2021 , 200, 111591	5.6	3
134	Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. <i>EMBO Journal</i> , 2021 , 40, e106048	13	26
133	Senolytics: Potential for Alleviating Diabetes and Its Complications. <i>Endocrinology</i> , 2021 , 162,	4.8	9
132	Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair. <i>Diabetes</i> , 2021 , 70, 1561-1574	0.9	5

(2021-2021)

131	JAK/STAT inhibition augments soleus muscle function in a rat model of critical illness myopathy via regulation of complement C3/3R. <i>Journal of Physiology</i> , 2021 , 599, 2869-2886	3.9	3
130	Senescent cells in human adipose tissue: A cross-sectional study. <i>Obesity</i> , 2021 , 29, 1320-1327	8	5
129	Senolytics reduce coronavirus-related mortality in old mice. <i>Science</i> , 2021 , 373,	33.3	60
128	Progressive Cellular Senescence Mediates Renal Dysfunction in Ischemic Nephropathy. <i>Journal of the American Society of Nephrology: JASN</i> , 2021 , 32, 1987-2004	12.7	6
127	New Horizons: Novel Approaches to Enhance Healthspan Through Targeting Cellular Senescence and Related Aging Mechanisms. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2021 , 106, e1481-e14	8 76	21
126	Mechanisms of vascular dysfunction in the interleukin-10-deficient murine model of preeclampsia indicate nitric oxide dysregulation. <i>Kidney International</i> , 2021 , 99, 646-656	9.9	3
125	Increased cellular senescence in the murine and human stenotic kidney: Effect of mesenchymal stem cells. <i>Journal of Cellular Physiology</i> , 2021 , 236, 1332-1344	7	11
124	Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. <i>Annual Review of Pharmacology and Toxicology</i> , 2021 , 61, 779-803	17.9	52
123	Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. <i>Aging Cell</i> , 2021 , 20, e13296	9.9	47
122	Senolytic Combination of Dasatinib and Quercetin Alleviates Intestinal Senescence and Inflammation and Modulates the Gut Microbiome in Aged Mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2021 , 76, 1895-1905	6.4	34
121	SMAD4 mutations and cross-talk between TGF-AFNI ignaling accelerate rates of DNA damage and cellular senescence, resulting in a segmental progeroid syndrome-the Myhre syndrome. <i>GeroScience</i> , 2021, 43, 1481-1496	8.9	2
120	Quercetin Reverses Cardiac Systolic Dysfunction in Mice Fed with a High-Fat Diet: Role of Angiogenesis. <i>Oxidative Medicine and Cellular Longevity</i> , 2021 , 2021, 8875729	6.7	4
119	Epigenetic and senescence markers indicate an accelerated ageing-like state in women with preeclamptic pregnancies. <i>EBioMedicine</i> , 2021 , 70, 103536	8.8	5
118	FBF1 deficiency promotes beiging and healthy expansion of white adipose tissue. <i>Cell Reports</i> , 2021 , 36, 109481	10.6	5
117	Fisetin for COVID-19 in skilled nursing facilities: Senolytic trials in the COVID era. <i>Journal of the American Geriatrics Society</i> , 2021 , 69, 3023-3033	5.6	9
116	Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. <i>Mechanisms of Ageing and Development</i> , 2021 , 198, 111548	5.6	5
115	SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. <i>Aging</i> , 2021 , 13, 21838-21854	5.6	4
114	Partial inhibition of mitochondrial complex I ameliorates Alzheimer disease pathology and cognition in APP/PS1 female mice. Communications Biology, 2021, 4, 61	6.7	11

113	The role of cellular senescence in ageing and endocrine disease. <i>Nature Reviews Endocrinology</i> , 2020 , 16, 263-275	15.2	133
112	Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. <i>American Journal of Physiology - Renal Physiology</i> , 2020 , 318, F1167-F1176	4.3	15
111	Discovery, development, and future application of senolytics: theories and predictions. <i>FEBS Journal</i> , 2020 , 287, 2418-2427	5.7	49
110	Transplanting cells from old but not young donors causes physical dysfunction in older recipients. <i>Aging Cell</i> , 2020 , 19, e13106	9.9	24
109	Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapy-Related Bone Loss. Journal of Bone and Mineral Research, 2020 , 35, 1119-1131	6.3	40
108	Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases. <i>Trends in Biochemical Sciences</i> , 2020 , 45, 578-592	10.3	55
107	Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice. <i>Aging</i> , 2020 , 12, 2711-2722	5.6	24
106	Discovery of Senolytics and the Pathway to Early Phase Clinical Trials. <i>Healthy Ageing and Longevity</i> , 2020 , 21-40	0.5	
105	Cellular senescence in aging and age-related diseases: Implications for neurodegenerative diseases. <i>International Review of Neurobiology</i> , 2020 , 155, 203-234	4.4	16
104	A toolbox for the longitudinal assessment of healthspan in aging mice. <i>Nature Protocols</i> , 2020 , 15, 540-	578 .8	38
103	Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. <i>Advanced Science</i> , 2020 , 7, 2002611	13.6	19
102	Senolytic drugs: from discovery to translation. <i>Journal of Internal Medicine</i> , 2020 , 288, 518-536	10.8	178
101	CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD and NMN levels. <i>Nature Metabolism</i> , 2020 , 2, 1284-1304	14.6	52
100	Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. <i>Cancers</i> , 2020 , 12,	6.6	46
99	Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. <i>Nature Communications</i> , 2020 , 11, 4289	17.4	55
98	Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. <i>Aging Cell</i> , 2020 , 19, e13219	9.9	7
97	Reducing Senescent Cell Burden in Aging and Disease. <i>Trends in Molecular Medicine</i> , 2020 , 26, 630-638	11.5	47
96	Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. <i>Frontiers in Cell and Developmental Biology</i> , 2020 , 8, 197	5.7	36

(2018-2019)

95	The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. <i>GeroScience</i> , 2019 , 41, 759-774	8.9	20
94	Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. <i>Biology of Sex Differences</i> , 2019 , 10, 49	9.3	28
93	Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. <i>EBioMedicine</i> , 2019 , 47, 446-456	8.8	356
92	Therapeutic Approaches to Aging-Reply. <i>JAMA - Journal of the American Medical Association</i> , 2019 , 321, 901-902	27.4	4
91	Independent Roles of Estrogen Deficiency and Cellular Senescence in the Pathogenesis of Osteoporosis: Evidence in Young Adult Mice and Older Humans. <i>Journal of Bone and Mineral Research</i> , 2019 , 34, 1407-1418	6.3	35
90	Targeting senescent cells alleviates obesity-induced metabolic dysfunction. <i>Aging Cell</i> , 2019 , 18, e12950	0 9.9	218
89	Aged-senescent cells contribute to impaired heart regeneration. <i>Aging Cell</i> , 2019 , 18, e12931	9.9	112
88	The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD decline. <i>Biochemical and Biophysical Research Communications</i> , 2019 , 513, 486-493	3.4	59
87	Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. <i>EMBO Journal</i> , 2019 , 38,	13	159
86	Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Translational Research, 2019 , 213, 112-123	11	48
85	Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. <i>BMJ Open Diabetes Research and Care</i> , 2019 , 7, e000720	₎ 4·5	23
84	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. <i>Cell Metabolism</i> , 2019 , 29, 1061-1077.e8	24.6	161
83	Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. <i>EBioMedicine</i> , 2019 , 40, 554-563	8.8	425
82	Cellular Senescence Biomarker p16INK4a+ Cell Burden in Thigh Adipose is Associated With Poor Physical Function in Older Women. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2018 , 73, 939-945	6.4	70
81	Muscle-specific differences in expression and phosphorylation of the Janus kinase 2/Signal Transducer and Activator of Transcription 3 following long-term mechanical ventilation and immobilization in rats. <i>Acta Physiologica</i> , 2018 , 222, e12980	5.6	7
80	The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. <i>American Journal of Physiology - Renal Physiology</i> , 2018 , 315, F1493-F1499	4.3	19
79	Senolytics improve physical function and increase lifespan in old age. <i>Nature Medicine</i> , 2018 , 24, 1246-13	256 .5	776
78	Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2) mice. <i>Hepatology</i> , 2018 , 67, 247-259	11.2	70

77	Senescent cell clearance by the immune system: Emerging therapeutic opportunities. <i>Seminars in Immunology</i> , 2018 , 40, 101275	10.7	138
76	Premature Physiologic Aging as a Paradigm for Understanding Increased Risk of Adverse Health Across the Lifespan of Survivors of Childhood Cancer. <i>Journal of Clinical Oncology</i> , 2018 , 36, 2206-2215	2.2	51
75	Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 2018, 36, 18-28	8.8	298
74	Aging, Cell Senescence, and Chronic Disease: Emerging Therapeutic Strategies. <i>JAMA - Journal of the American Medical Association</i> , 2018 , 320, 1319-1320	27.4	123
73	17 Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2017 , 72, 3-15	6.4	61
72	Cellular senescence mediates fibrotic pulmonary disease. <i>Nature Communications</i> , 2017 , 8, 14532	17.4	616
71	Cellular Senescence: A Translational Perspective. <i>EBioMedicine</i> , 2017 , 21, 21-28	8.8	453
70	Cellular senescence drives age-dependent hepatic steatosis. <i>Nature Communications</i> , 2017 , 8, 15691	17.4	408
69	The Clinical Potential of Senolytic Drugs. <i>Journal of the American Geriatrics Society</i> , 2017 , 65, 2297-2301	5.6	290
68	Targeting cellular senescence prevents age-related bone loss in mice. <i>Nature Medicine</i> , 2017 , 23, 1072-7	19 795	464
67	Identification of HSP90 inhibitors as a novel class of senolytics. <i>Nature Communications</i> , 2017 , 8, 422	17.4	312
66	Biology of premature ageing in survivors of cancer. <i>ESMO Open</i> , 2017 , 2, e000250	6	85
65	New agents that target senescent cells: the flavone, fisetin, and the BCL-X inhibitors, A1331852 and A1155463. <i>Aging</i> , 2017 , 9, 955-963	5.6	286
64	TNFE enescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. <i>Aging</i> , 2017 , 9, 2411-2435	5.6	55
63	Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2017 , 72, 780-785	6.4	111
62	Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. <i>Gut</i> , 2016 , 65, 1165-74	19.2	119
61	Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. <i>Science Signaling</i> , 2016 , 9, ra79	8.8	50
60	Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence. <i>Gerontology</i> , 2016 , 62, 163-72	5.5	14

59	Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. <i>Diabetes</i> , 2016 , 65, 1606-15	0.9	137
58	The Way Forward: Translation 2016 , 593-622		
57	Identification of Senescent Cells in the Bone Microenvironment. <i>Journal of Bone and Mineral Research</i> , 2016 , 31, 1920-1929	6.3	214
56	Perspective: Targeting the JAK/STAT pathway to fight age-related dysfunction. <i>Pharmacological Research</i> , 2016 , 111, 152-154	10.2	37
55	Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. <i>Aging Cell</i> , 2016 , 15, 428-35	9.9	463
54	Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. <i>Aging Cell</i> , 2016 , 15, 973-7	9.9	382
53	The AchillesRheel of senescent cells: from transcriptome to senolytic drugs. <i>Aging Cell</i> , 2015 , 14, 644-58	3 9.9	987
52	Frailty in childhood cancer survivors. <i>Cancer</i> , 2015 , 121, 1540-7	6.4	95
51	Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. <i>Diabetes</i> , 2015 , 64, 2289-98	0.9	211
50	Inflammatory characteristics of adipose tissue collected by surgical excision vs needle aspiration. <i>International Journal of Obesity</i> , 2015 , 39, 874-6	5.5	4
49	Inflammation and the depot-specific secretome of human preadipocytes. <i>Obesity</i> , 2015 , 23, 989-99	8	26
48	Deleted in breast cancer 1 limits adipose tissue fat accumulation and plays a key role in the development of metabolic syndrome phenotype. <i>Diabetes</i> , 2015 , 64, 12-22	0.9	15
47	Cellular Senescence and the Biology of Aging, Disease, and Frailty. <i>Nestle Nutrition Institute Workshop Series</i> , 2015 , 83, 11-8	1.9	86
46	Targeting senescent cells enhances adipogenesis and metabolic function in old age. <i>ELife</i> , 2015 , 4, e129	987 9	299
45	Clinical strategies and animal models for developing senolytic agents. <i>Experimental Gerontology</i> , 2015 , 68, 19-25	4.5	102
44	JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E6301-1	$d^{1.5}$	357
43	TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. <i>Journal of Hepatology</i> , 2015 , 62, 1156-63	13.4	73
42	Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health benefits seen in global GHR-/- mice. <i>Aging</i> , 2015 , 7, 500-12	5.6	36

41	The Aging Adipose Organ: Lipid Redistribution, Inflammation, and Cellular Senescence 2014 , 69-80		6
40	Liver-specific GH receptor gene-disrupted (LiGHRKO) mice have decreased endocrine IGF-I, increased local IGF-I, and altered body size, body composition, and adipokine profiles. <i>Endocrinology</i> , 2014, 155, 1793-805	4.8	95
39	Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. <i>Journal of Assisted Reproduction and Genetics</i> , 2014 , 31, 1259-67	3.4	21
38	Deleted in Breast Cancer 1 regulates cellular senescence during obesity. <i>Aging Cell</i> , 2014 , 13, 951-3	9.9	18
37	Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. <i>Current Opinion in Clinical Nutrition and Metabolic Care</i> , 2014 , 17, 324-8	3.8	170
36	Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. <i>Aging</i> , 2014 , 6, 575-86	5.6	91
35	IGF-I attenuates FFA-induced activation of JNK1 phosphorylation and TNFIexpression in human subcutaneous preadipocytes. <i>Obesity</i> , 2013 , 21, 1843-9	8	14
34	Mechanisms and metabolic implications of regional differences among fat depots. <i>Cell Metabolism</i> , 2013 , 17, 644-656	24.6	388
33	Preferential impact of pregnancy-associated plasma protein-A deficiency on visceral fat in mice on high-fat diet. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2013 , 305, E1145-53	6	25
32	Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. <i>Journal of Clinical Investigation</i> , 2013 , 123, 966-72	15.9	971
31	Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance. <i>Obesity</i> , 2012 , 20, 2341-7	8	58
30	Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. <i>Nature</i> , 2011 , 479, 232-6	50.4	2098
29	Aging and Adipose Tissue 2011 , 119-139		1
28	Aging and regional differences in fat cell progenitors - a mini-review. <i>Gerontology</i> , 2011 , 57, 66-75	5.5	162
27	Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 143-8	11.5	382
26	Fat tissue, aging, and cellular senescence. <i>Aging Cell</i> , 2010 , 9, 667-84	9.9	645
25	Sex- and depot-dependent differences in adipogenesis in normal-weight humans. <i>Obesity</i> , 2010 , 18, 187	\$ -80	102
24	Cellular and Molecular Basis of Functional Differences among Fat Depots 2010 , 21-47		5

23	Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. <i>Diabetes</i> , 2010 , 59, 2513-21	0.9	113
22	Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 18226-31	11.5	269
21	Aging, depot origin, and preadipocyte gene expression. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2010 , 65, 242-51	6.4	68
20	IGF-I activation of the AKT pathway is impaired in visceral but not subcutaneous preadipocytes from obese subjects. <i>Endocrinology</i> , 2010 , 151, 3752-63	4.8	40
19	Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. <i>Diabetes</i> , 2010 , 59, 2755-63	0.9	183
18	Substance P promotes expansion of human mesenteric preadipocytes through proliferative and antiapoptotic pathways. <i>American Journal of Physiology - Renal Physiology</i> , 2009 , 296, G1012-9	5.1	36
17	Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. <i>Obesity</i> , 2008 , 16, 932-7	8	155
16	Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. <i>Molecular and Cellular Endocrinology</i> , 2008 , 296, 32-40	4.4	125
15	Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. <i>Experimental Gerontology</i> , 2007 , 42, 463-71	4.5	220
14	Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2007 , 292, E1041-51	6	61
13	Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2007 , 292, E298-307	6	277
12	Increased TNFalpha and CCAAT/enhancer-binding protein homologous protein with aging predispose preadipocytes to resist adipogenesis. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2007 , 293, E1810-9	6	46
11	Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. <i>Diabetes</i> , 2006 , 55, 2571-8	0.9	189
10	Induction of colitis causes inflammatory responses in fat depots: evidence for substance P pathways in human mesenteric preadipocytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 5207-12	11.5	70
9	Increased CUG triplet repeat-binding protein-1 predisposes to impaired adipogenesis with aging. <i>Journal of Biological Chemistry</i> , 2006 , 281, 23025-33	5.4	51
8	Current Views of the Fat Cell as an Endocrine Cell: Lipotoxicity 2006 , 105-123		19
7	Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2005 , 288, E267-77	6	190
6	Adipogenesis and aging: does aging make fat go MAD?. Experimental Gerontology, 2002, 37, 757-67	4.5	268

5	Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002 , 282, R1286-96 ³	2	194
4	Altered expression of C/EBP family members results in decreased adipogenesis with aging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001 , 280, R1772-80 ³	.2	120
3	Fat depot origin affects fatty acid handling in cultured rat and human preadipocytes. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2001 , 280, E238-47		65
2	Different fat depots are distinct mini-organs. <i>Current Opinion in Endocrinology, Diabetes and Obesity</i> , 2001 , 8, 227-234		9
1	Length-independent telomere damage drives cardiomyocyte senescence		1