Katrin Meusburger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 2017, 8, 2013.	5.8	1,398
2	The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 2015, 54, 438-447.	2.4	825
3	Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 2015, 48, 38-50.	2.5	516
4	Rainfall erosivity in Europe. Science of the Total Environment, 2015, 511, 801-814.	3.9	443
5	Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 2019, 7, 203-225.	3.0	389
6	Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 2014, 479-480, 189-200.	3.9	354
7	Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 2017, 7, 4175.	1.6	348
8	A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences (Switzerland), 2015, 5, 117-126.	1.0	246
9	Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science and Policy, 2015, 51, 23-34.	2.4	240
10	Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrology and Earth System Sciences, 2012, 16, 167-177.	1.9	199
11	Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review. Earth-Science Reviews, 2014, 138, 335-351.	4.0	194
12	Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 2017, 579, 1298-1315.	3.9	142
13	Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. Journal of Hydrology, 2017, 548, 251-262.	2.3	132
14	Soil Conservation in Europe: Wish or Reality?. Land Degradation and Development, 2016, 27, 1547-1551.	1.8	125
15	Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena, 2016, 137, 161-172.	2.2	121
16	A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes. Environmental Research, 2018, 161, 291-298.	3.7	116
17	Impacts of anthropogenic and environmental factors on the occurrence of shallow landslides in an alpine catchment (Urseren Valley, Switzerland). Natural Hazards and Earth System Sciences, 2008, 8, 509-520.	1.5	113
18	The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011). Earth-Science Reviews, 2013, 127, 300-307.	4.0	113

KATRIN MEUSBURGER

#	Article	IF	CITATIONS
19	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	4.2	113
20	Assessing soil erosion in Europe based on data collected through a European network. Soil Science and Plant Nutrition, 2014, 60, 15-29.	0.8	95
21	Tracking water pathways in steep hillslopes by δ180 depth profiles of soil water. Journal of Hydrology, 2014, 519, 340-352.	2.3	89
22	Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 208-215.	1.4	86
23	Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere, 2014, 103, 274-280.	4.2	84
24	An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in Alpine grasslands. Journal of Soils and Sediments, 2015, 15, 1383-1399.	1.5	82
25	Soil erodibility estimation using LUCAS point survey data of Europe. Environmental Modelling and Software, 2012, 30, 143-145.	1.9	73
26	Methods to describe and predict soil erosion in mountain regions. Landscape and Urban Planning, 2008, 88, 46-53.	3.4	64
27	Quantitative sediment source attribution with compound-specific isotope analysis in a C3 plant-dominated catchment (central Switzerland). Biogeosciences, 2016, 13, 1587-1596.	1.3	63
28	Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments. Water (Switzerland), 2016, 8, 119.	1.2	60
29	Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. Journal of Hydrology, 2012, 440-441, 90-101.	2.3	59
30	Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. MethodsX, 2019, 6, 219-229.	0.7	56
31	Determinants of legacy effects in pine trees – implications from an irrigationâ€stop experiment. New Phytologist, 2020, 227, 1081-1096.	3.5	52
32	239+240 Pu from "contaminant―to soil erosion tracer: Where do we stand?. Earth-Science Reviews, 2017, 172, 107-123.	4.0	51
33	Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers. New Phytologist, 2022, 233, 194-206.	3.5	51
34	Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland. Remote Sensing of Environment, 2018, 211, 89-104.	4.6	47
35	Novel application of Compound Specific Stable Isotope (CSSI) techniques to investigate on-site sediment origins across arable fields. Geoderma, 2018, 316, 19-26.	2.3	45
36	Regionalization of monthly rainfall erosivity patterns in Switzerland. Hydrology and Earth System Sciences, 2016, 20, 4359-4373.	1.9	44

KATRIN MEUSBURGER

#	Article	IF	CITATIONS
37	Objectâ€oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments. Land Degradation and Development, 2018, 29, 1270-1281.	1.8	44
38	Use of a 137Cs re-sampling technique to investigate temporal changes in soil erosion and sediment mobilisation for a small forested catchment in southern Italy. Journal of Environmental Radioactivity, 2014, 138, 137-148.	0.9	43
39	On the influence of temporal change on the validity of landslide susceptibility maps. Natural Hazards and Earth System Sciences, 2009, 9, 1495-1507.	1.5	41
40	Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 201-207.	1.4	40
41	Erosion-induced changes in soil biogeochemical and microbiological properties in Swiss Alpine grasslands. Soil Biology and Biochemistry, 2014, 69, 382-392.	4.2	39
42	Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea. Biogeosciences, 2013, 10, 5627-5638.	1.3	37
43	A multi-radionuclide approach to evaluate the suitability of 239+240Pu as soil erosion tracer. Science of the Total Environment, 2016, 566-567, 1489-1499.	3.9	36
44	Effect of permafrost on the formation of soil organic carbon pools and their physical–chemical properties in the Eastern Swiss Alps. Catena, 2013, 110, 70-85.	2.2	34
45	Modelling Deposition and Erosion rates with RadioNuclides (MODERN) – Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides. Journal of Environmental Radioactivity, 2016, 162-163, 45-55.	0.9	34
46	Geophysical imaging of shallow subsurface topography and its implication for shallow landslide susceptibility in the Urseren Valley, Switzerland. Journal of Applied Geophysics, 2012, 83, 46-56.	0.9	32
47	Drought alters the carbon footprint of trees in soils—tracking the spatioâ€ŧemporal fate of ¹³ Câ€labelled assimilates in the soil of an oldâ€growth pine forest. Global Change Biology, 2021, 27, 2491-2506.	4.2	32
48	Monthly RUSLE soil erosion risk of Swiss grasslands. Journal of Maps, 2019, 15, 247-256.	1.0	31
49	Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils. Scientific Reports, 2020, 10, 11858.	1.6	31
50	Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy). Hydrology and Earth System Sciences, 2012, 16, 517-528.	1.9	30
51	Excess Lead-210 and Plutonium-239+240: Two suitable radiogenic soil erosion tracers for mountain grassland sites. Environmental Research, 2018, 160, 195-202.	3.7	29
52	The effect of permafrost on time-split soil erosion using radionuclides (137Cs, 239 + 240Pu, meteoric) 1400-1419.	Tj ETQq0 1.5	0 0 rgBT /Ove 27
53	Modelling Deposition and Erosion rates with RadioNuclides (MODERN) – Part 2: A comparison of different models to convert 239+240 Pu inventories into soil redistribution rates at unploughed sites. Journal of Environmental Radioactivity, 2016, 162-163, 97-106.	0.9	25
54	Droneâ€based physiological index reveals longâ€ŧerm acclimation and drought stress responses in trees. Plant, Cell and Environment, 2021, 44, 3552-3570.	2.8	25

#	Article	IF	CITATIONS
55	Reply to "The new assessment of soil loss by water erosion in Europe. Panagos P. et al., 2015 Environ. Sci. Policy 54, 438–447—A response―by Evans and Boardman [Environ. Sci. Policy 58, 11–15]. Environmental Science and Policy, 2016, 59, 53-57.	2.4	24
56	Application of in-situ measurement to determine 137Cs in the Swiss Alps. Journal of Environmental Radioactivity, 2010, 101, 369-376.	0.9	20
57	Soil erosion by snow gliding – a first quantification attempt in a subalpine area in Switzerland. Hydrology and Earth System Sciences, 2014, 18, 3763-3775.	1.9	20
58	Reply to the comment on "Rainfall erosivity in Europe―by Auerswald et al Science of the Total Environment, 2015, 532, 853-857.	3.9	19
59	Spatio-temporal pattern of soil degradation in a Swiss Alpine grassland catchment. Remote Sensing of Environment, 2019, 235, 111441.	4.6	17
60	Soil erosion in an avalanche release site (Valle d'Aosta: Italy): towards a winter factor for RUSLE in the Alps. Natural Hazards and Earth System Sciences, 2014, 14, 1761-1771.	1.5	17
61	Reply to the comment on "The new assessment of soil loss by water erosion in Europe―by Fiener & Auerswald. Environmental Science and Policy, 2016, 57, 143-150.	2.4	16
62	Advancing simulations of water fluxes, soil moisture and drought stress by using the LWF-Brook90 hydrological model in R. Agricultural and Forest Meteorology, 2020, 291, 108023.	1.9	16
63	Modelling Hot Spots of Soil Loss by Wind Erosion (<scp>SoLoWind</scp>) in Western Saxony, Germany. Land Degradation and Development, 2017, 28, 1100-1112.	1.8	15
64	Assessing soil redistribution of forest and cropland sites in wet tropical Africa using ²³⁹⁺²⁴⁰ Pu fallout radionuclides. Soil, 2021, 7, 399-414.	2.2	15
65	Lessons learned from a longâ€ŧerm irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. Ecological Monographs, 2022, 92, e1507.	2.4	15
66	Sampling soil and sediment depth profiles at a fine resolution with a new device for determining physical, chemical and biological properties: the Fine Increment Soil Collector (FISC). Journal of Soils and Sediments, 2014, 14, 630-636.	1.5	14
67	Plants or bacteria? 130 years of mixed imprints in Lake Baldegg sediments (Switzerland), as revealed by compound-specific isotope analysis (CSIA) and biomarker analysis. Biogeosciences, 2019, 16, 2131-2146.	1.3	14
68	Fate of 137 Cs, 90 Sr and 239+240 Pu in soil profiles at a water recharge site in Basel, Switzerland. Journal of Environmental Radioactivity, 2018, 182, 85-94.	0.9	13
69	Soil–plant interactions modulated water availability of Swiss forests during the 2015 and 2018 droughts. Global Change Biology, 2022, 28, 5928-5944.	4.2	13
70	Photosynthetic acclimation and sensitivity to short- and long-term environmental changes in a drought-prone forest. Journal of Experimental Botany, 2022, 73, 2576-2588.	2.4	12
71	Soil fauna drives vertical redistribution of soil organic carbon in a longâ€ŧerm irrigated dry pine forest. Global Change Biology, 2022, 28, 3145-3160.	4.2	12
72	Filling the European blank spot—Swiss soil erodibility assessment with topsoil samples. Journal of Plant Nutrition and Soil Science, 2018, 181, 737-748.	1.1	11

#	Article	IF	CITATIONS
73	Decision support for the selection of reference sites using ¹³⁷ Cs as a soil erosion tracer. Soil, 2017, 3, 113-122.	2.2	6
74	Spatial evaluation of snow gliding in the Alps. Catena, 2018, 165, 567-575.	2.2	6
75	Advances in soil erosion modelling through remote sensing data availability at European scale. Proceedings of SPIE, 2014, , .	0.8	5
76	Investigating causal factors of shallow landslides in grassland regions of Switzerland. Natural Hazards and Earth System Sciences, 2021, 21, 3421-3437.	1.5	4
77	Documenting soil redistribution on livestockâ€poached pasture using caesiumâ€134 and cobaltâ€60 as tracers. Land Degradation and Development, 2019, 30, 315-327.	1.8	3
78	Change of permanent grasslands extent (1996-2015) and national grassland dataset of Switzerland. Data in Brief, 2018, 20, 1992-1998.	0.5	2
79	Modelling Long-Term Storm Erosivity Time-Series: A Case Study in the Western Swiss Plateau. Advances in Natural and Technological Hazards Research, 2014, , 149-164.	1.1	1
80	Occurrence and erosion susceptibility of German Pelosols and international equivalents [#] . Journal of Plant Nutrition and Soil Science, 0, , .	1.1	1