
Christopher A Bishop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The partial 5-HT1A agonist buspirone reduces the expression and development of I-DOPA-induced dyskinesia in rats and improves I-DOPA efficacy. Pharmacology Biochemistry and Behavior, 2007, 87, 306-314.	2.9	136
2	The role of the dorsal raphe nucleus in the development, expression, and treatment of <scp>L</scp> â€dopaâ€induced dyskinesia in hemiparkinsonian rats. Synapse, 2009, 63, 610-620.	1.2	118
3	Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Experimental Neurology, 2011, 229, 288-299.	4.1	111
4	Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2013, 37, 2737-2750.	6.1	111
5	Potential mechanisms underlying anxiety and depression in Parkinson's disease: Consequences of l-DOPA treatment. Neuroscience and Biobehavioral Reviews, 2011, 35, 556-564.	6.1	109
6	The differential effects of 5-HT1A receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Research, 2007, 1158, 135-143.	2.2	82
7	Striatal 5-HT1A receptor stimulation reduces D1 receptor-induced dyskinesia and improves movement in the hemiparkinsonian rat. Neuropharmacology, 2008, 55, 1321-1328.	4.1	80
8	Contribution of the striatum to the effects of 5â€HT1A receptor stimulation in Lâ€DOPAâ€ŧreated hemiparkinsonian rats. Journal of Neuroscience Research, 2009, 87, 1645-1658.	2.9	79
9	Serotonin transporter inhibition attenuates <scp>l</scp> â€DOPAâ€induced dyskinesia without compromising <scp>l</scp> â€DOPA efficacy in hemiâ€parkinsonian rats. European Journal of Neuroscience, 2012, 36, 2839-2848.	2.6	70
10	Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat. Pharmacology Biochemistry and Behavior, 2005, 81, 887-893.	2.9	68
11	Role of the primary motor cortex in l-DOPA-induced dyskinesia and its modulation by 5-HT1A receptor stimulation. Neuropharmacology, 2011, 61, 753-760.	4.1	61
12	MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation. European Journal of Neuroscience, 2006, 23, 2669-2676.	2.6	58
13	Effects of prolonged selective serotonin reuptake inhibition on the development and expression of l-DOPA-induced dyskinesia in hemi-parkinsonian rats. Neuropharmacology, 2014, 77, 1-8.	4.1	57
14	Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on l-DOPA-induced dyskinesia and rotational behaviors in the hemi-parkinsonian rat. Psychopharmacology, 2008, 199, 99-108.	3.1	50
15	Regulation of dopamine neurotransmission from serotonergic neurons by ectopic expression of the dopamine D2 autoreceptor blocks levodopa-induced dyskinesia. Acta Neuropathologica Communications, 2019, 7, 8.	5.2	50
16	Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats. Pharmacology Biochemistry and Behavior, 2012, 100, 607-615.	2.9	49
17	Serotonin 5-HT2A Receptors Underlie Increased Motor Behaviors Induced in Dopamine-Depleted Rats by Intrastriatal 5-HT2A/2C Agonism. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 687-694.	2.5	48
18	Serotonin 2A receptor antagonist treatment reduces dopamine D1 receptor-mediated rotational behavior but not l-DOPA-induced abnormal involuntary movements in the unilateral dopamine-depleted rat. Neuropharmacology, 2006, 50, 761-768.	4.1	45

#	Article	IF	CITATIONS
19	Behavioral and Cellular Modulation of I-DOPA-Induced Dyskinesia by β-Adrenoceptor Blockade in the 6-Hydroxydopamine-Lesioned Rat. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 755-765.	2.5	44
20	Ceftriaxone reduces <scp>L</scp> â€dopa–induced dyskinesia severity in 6â€hydroxydopamine parkinson's disease model. Movement Disorders, 2017, 32, 1547-1556.	3.9	42
21	Serotonin 1B receptor stimulation reduces D1 receptor agonist-induced dyskinesia. NeuroReport, 2009, 20, 1265-1269.	1.2	39
22	Effects of Muscarinic Acetylcholine m1 and m4 Receptor Blockade on Dyskinesia in the Hemi-Parkinsonian Rat. Neuroscience, 2019, 409, 180-194.	2.3	38
23	Characterizing the differential roles of striatal 5-HT 1A auto- and hetero-receptors in the reduction of I -DOPA-induced dyskinesia. Experimental Neurology, 2017, 292, 168-178.	4.1	37
24	Behavioral and cellular dopamine D1 and D3 receptor-mediated synergy: Implications for L-DOPA-induced dyskinesia. Neuropharmacology, 2018, 138, 304-314.	4.1	34
25	Biased G Protein-Independent Signaling of Dopamine D1-D3 Receptor Heteromers in the Nucleus Accumbens. Molecular Neurobiology, 2019, 56, 6756-6769.	4.0	33
26	A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neuroscience and Biobehavioral Reviews, 2018, 92, 67-82.	6.1	31
27	Effects of 5-HT _{1A} Receptor Stimulation on D1 Receptor Agonist-Induced Striatonigral Activity and Dyskinesia in Hemiparkinsonian Rats. ACS Chemical Neuroscience, 2013, 4, 747-760.	3.5	30
28	Effects of the betaâ€adrenergic receptor antagonist Propranolol on dyskinesia and Lâ€DOPAâ€induced striatal DA efflux in the hemiâ€parkinsonian rat. Journal of Neurochemistry, 2015, 134, 222-232.	3.9	30
29	The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats. Journal of Neuroscience, 2016, 36, 9873-9887.	3.6	30
30	Serotonin 5-HT but not 5-HT receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D agonist SKF 82958. Neuropharmacology, 2005, 49, 350-358.	4.1	29
31	Pedunculopontine Nucleus Degeneration Contributes to Both Motor and Non-Motor Symptoms of Parkinson's Disease. Frontiers in Pharmacology, 2019, 10, 1494.	3.5	29
32	Serotonergic targets for the treatment of l-DOPA-induced dyskinesia. Journal of Neural Transmission, 2018, 125, 1203-1216.	2.8	28
33	Tryptophan hydroxylase 2 aggregates through disulfide cross-linking upon oxidation: possible link to serotonin deficits and non-motor symptoms in Parkinson's disease. Journal of Neurochemistry, 2011, 116, 426-437.	3.9	26
34	Monoamine transporter contributions to l-DOPA effects in hemi-parkinsonian rats. Neuropharmacology, 2016, 110, 125-134.	4.1	24
35	Effects of noradrenergic denervation by anti-DBH-saporin on behavioral responsivity to I-DOPA in the hemi-parkinsonian rat. Behavioural Brain Research, 2014, 270, 75-85.	2.2	22
36	Dâ€512, a novel dopamine D _{2/3} receptor agonist, demonstrates greater antiâ€Parkinsonian efficacy than ropinirole in Parkinsonian rats. British Journal of Pharmacology, 2017, 174, 3058-3071.	5.4	22

#	Article	IF	CITATIONS
37	Modulation of l-DOPA's antiparkinsonian and dyskinetic effects by α2-noradrenergic receptors within the locus coeruleus. Neuropharmacology, 2015, 95, 215-225.	4.1	21
38	Effect of tricyclic antidepressants on L-DOPA-induced dyskinesia and motor improvement in hemi-parkinsonian rats. Pharmacology Biochemistry and Behavior, 2016, 142, 64-71.	2.9	20
39	A working model for the assessment of disruptions in social behavior among aged rats: The role of sex differences, social recognition, and sensorimotor processes. Experimental Gerontology, 2016, 76, 46-57.	2.8	20
40	Diverse serotonin actions of vilazodone reduce lâ€3,4â€dihidroxyphenylalanine–induced dyskinesia in hemiâ€parkinsonian rats. Movement Disorders, 2018, 33, 1740-1749.	3.9	19
41	Genetic suppression of the dopamine D3 receptor in striatal D1 cells reduces the development of L-DOPA-induced dyskinesia. Experimental Neurology, 2021, 336, 113534.	4.1	13
42	Intrastriatal dopamine D1 receptor agonist-mediated motor behavior is reduced by local neurokinin 1 receptor antagonism. Synapse, 2005, 57, 1-7.	1.2	12
43	Genetic basis of susceptibility to lowâ€dose paraquat and variation between the sexes in <i>Drosophila melanogaster</i> . Molecular Ecology, 2021, 30, 2040-2053.	3.9	11
44	Striatal norepinephrine efflux in l-DOPA-induced dyskinesia. Neurochemistry International, 2018, 114, 85-98.	3.8	10
45	Late aging–associated increases in L-DOPA–induced dyskinesia areÂaccompanied by heightened neuroinflammation in the hemi-parkinsonian rat. Neurobiology of Aging, 2019, 81, 190-199.	3.1	10
46	Striatal Nurr1, but not FosB expression links a levodopa-induced dyskinesia phenotype to genotype in Fisher 344 vs. Lewis hemiparkinsonian rats. Experimental Neurology, 2020, 330, 113327.	4.1	10
47	Intranigral antagonism of neurokinin 1 and 3 receptors reduces intrastriatal dopamine D1 receptor-stimulated locomotion in the rat. Brain Research, 2004, 1023, 126-133.	2.2	9
48	Reciprocal cross-sensitization of D1 and D3 receptors following pharmacological stimulation in the hemiparkinsonian rat. Psychopharmacology, 2020, 237, 155-165.	3.1	8
49	The multimodal serotonin compound Vilazodone alone, but not combined with the glutamate antagonist Amantadine, reduces l-DOPA-induced dyskinesia in hemiparkinsonian rats. Pharmacology Biochemistry and Behavior, 2022, 217, 173393.	2.9	8
50	Effects of pedunculopontine nucleus cholinergic lesion on gait and dyskinesia in hemiparkinsonian rats. European Journal of Neuroscience, 2021, 53, 2835-2847.	2.6	7
51	Combined Knockout of Lrrk2 and Rab29 Does Not Result in Behavioral Abnormalities in vivo. Journal of Parkinson's Disease, 2021, 11, 569-584.	2.8	7
52	Modulation of nigral dopamine signaling mitigates parkinsonian signs of aging: evidence from intervention with calorie restriction or inhibition of dopamine uptake. GeroScience, 2023, 45, 45-63.	4.6	7
53	Neuroinflammation: Fanning the fire of <scp>l</scp> â€dopaâ€induced dyskinesia. Movement Disorders, 2019, 34, 1758-1760.	3.9	6
54	Dopamine D3 Receptor Plasticity in Parkinson's Disease and L-DOPA-Induced Dyskinesia. Biomedicines, 2021, 9, 314.	3.2	5

#	Article	IF	CITATIONS
55	Dopamine receptor cooperativity synergistically drives dyskinesia, motor behavior, and striatal GABA neurotransmission in hemiparkinsonian rats. Neuropharmacology, 2020, 174, 108138.	4.1	3
56	The effects of Vilazodone, YL-0919 and Vortioxetine in hemiparkinsonian rats. Psychopharmacology, 2022, , 1.	3.1	3
57	Response to Rye and Bliwise. Sleep, 1997, 20, 814-814.	1.1	Ο
58	Stereotaxic Intracranial Delivery of Chemicals, Proteins or Viral Vectors to Study Parkinson's Disease. Journal of Visualized Experiments, 2021, , .	0.3	0
59	The Role of the Noradrenergic System and Its Receptors in Levodopa-Induced Dyskinesia. , 2014, , 265-283.		Ο