Richard Reynolds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased expression of pathological markers in Parkinson's disease dementia post-mortem brains compared to dementia with Lewy bodies. BMC Neuroscience, 2022, 23, 3.	1.9	7
2	The association between neurodegeneration and local complement activation in the thalamus to progressive multiple sclerosis outcome. Brain Pathology, 2022, 32, e13054.	4.1	13
3	Diverse pathways to neuronal necroptosis in Alzheimer's disease. European Journal of Neuroscience, 2022, 56, 5428-5441.	2.6	13
4	Tissue donations for multiple sclerosis research: current state and suggestions for improvement. Brain Communications, 2022, 4, fcac094.	3.3	4
5	Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain, 2022, 145, 4287-4307.	7.6	12
6	CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 534-547.	3.7	19
7	CSF proteome in multiple sclerosis subtypes related to brain lesion transcriptomes. Scientific Reports, 2021, 11, 4132.	3.3	10
8	Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathologica, 2021, 141, 585-604.	7.7	56
9	Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration. Acta Neuropathologica, 2021, 141, 881-899.	7.7	47
10	The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic options. Brain, 2021, 144, 2571-2593.	7.6	119
11	Surface-in pathology in multiple sclerosis: a new view on pathogenesis?. Brain, 2021, 144, 1646-1654.	7.6	31
12	Changes in Cerebrospinal Fluid Balance of TNF and TNF Receptors in NaÃ⁻ve Multiple Sclerosis Patients: Early Involvement in Compartmentalised Intrathecal Inflammation. Cells, 2021, 10, 1712.	4.1	13
13	Investigation of the correlation between mildly deleterious mtDNA Variations and the clinical progression of multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 53, 103055.	2.0	3
14	Unbiased examination of genome-wide human endogenous retrovirus transcripts in MS brain lesions. Multiple Sclerosis Journal, 2021, 27, 1829-1837.	3.0	6
15	TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. Acta Neuropathologica Communications, 2021, 9, 159.	5.2	95
16	HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell, 2020, 183, 1264-1281.e20.	28.9	133
17	Intrathecal Inflammation in Progressive Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 8217.	4.1	36
18	The <scp>CSF</scp> Profile Linked to Cortical Damage Predicts Multiple Sclerosis Activity. Annals of Neurology, 2020, 88, 562-573.	5.3	46

#	Article	IF	CITATIONS
19	Interleukin-9 regulates macrophage activation in the progressive multiple sclerosis brain. Journal of Neuroinflammation, 2020, 17, 149.	7.2	41
20	Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration. Acta Neuropathologica Communications, 2020, 8, 66.	5.2	41
21	Absence of miRNA-146a Differentially Alters Microglia Function and Proteome. Frontiers in Immunology, 2020, 11, 1110.	4.8	20
22	B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathology, 2020, 30, 779-793.	4.1	76
23	Neuroinflammation in the normal-appearing white matter (NAWM) of the multiple sclerosis brain causes abnormalities at the nodes of Ranvier. PLoS Biology, 2020, 18, e3001008.	5.6	28
24	B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathology, 2020, 30, 779-793.	4.1	8
25	Substantial subpial cortical demyelination in progressive multiple sclerosis: have we underestimated the extent of cortical pathology?. Neuroimmunology and Neuroinflammation, 2020, , .	1.4	3
26	Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature, 2019, 573, 75-82.	27.8	385
27	Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 2150-2163.	3.7	51
28	Molecular signature of different lesion types in the brain white matter of patients with progressive multiple sclerosis. Acta Neuropathologica Communications, 2019, 7, 205.	5.2	61
29	Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. Journal of Neuroinflammation, 2019, 16, 259.	7.2	79
30	Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease. Molecular Neurobiology, 2019, 56, 5009-5024.	4.0	16
31	Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Annals of Neurology, 2018, 83, 739-755.	5.3	219
32	Temporal-Spatial Profiling of Pedunculopontine Galanin-Cholinergic Neurons in the Lactacystin Rat Model of Parkinson's Disease. Neurotoxicity Research, 2018, 34, 16-31.	2.7	6
33	Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Annals of Neurology, 2018, 84, 829-842.	5.3	96
34	Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis. Cell, 2018, 175, 85-100.e23.	28.9	350
35	Increased cortical lesion load and intrathecal inflammation is associated with oligoclonal bands in multiple sclerosis patients: a combined CSF and MRI study. Journal of Neuroinflammation, 2017, 14, 40.	7.2	82
36	Heterogeneity of Cortical Lesion Susceptibility Mapping in Multiple Sclerosis. American Journal of Neuroradiology, 2017, 38, 1087-1095.	2.4	16

#	Article	IF	CITATIONS
37	Programmed death 1 is highly expressed on <scp>CD</scp> 8 ⁺ <scp>CD</scp> 57 ⁺ T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein–Barr virus. Immunology, 2017, 152, 660-676.	4.4	37
38	Patient-reported outcomes and survival in multiple sclerosis: A 10-year retrospective cohort study using the Multiple Sclerosis Impact Scale–29. PLoS Medicine, 2017, 14, e1002346.	8.4	19
39	A practical review of the neuropathology and neuroimaging of multiple sclerosis. Practical Neurology, 2016, 16, 279-287.	1.1	30
40	Complement is activated in progressive multiple sclerosis cortical grey matter lesions. Journal of Neuroinflammation, 2016, 13, 161.	7.2	101
41	Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2016, 9, 31-43.	3.5	29
42	Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 25-35.	3.0	32
43	Exploring the origins of grey matter damage in multiple sclerosis. Nature Reviews Neuroscience, 2015, 16, 147-158.	10.2	317
44	Neurofascin 140 Is an Embryonic Neuronal Neurofascin Isoform That Promotes the Assembly of the Node of Ranvier. Journal of Neuroscience, 2015, 35, 2246-2254.	3.6	37
45	Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nature Communications, 2015, 6, 8518.	12.8	223
46	Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space. Neuropathology and Applied Neurobiology, 2015, 41, 798-813.	3.2	82
47	Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain, 2015, 138, 110-119.	7.6	76
48	Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. Journal of Neural Transmission, 2015, 122, 1055-1068.	2.8	126
49	Regional Distribution and Evolution of Gray Matter Damage in Different Populations of Multiple Sclerosis Patients. PLoS ONE, 2015, 10, e0135428.	2.5	49
50	Oligodendrocyte Gap Junction Loss and Disconnection From Reactive Astrocytes in Multiple Sclerosis Gray Matter. Journal of Neuropathology and Experimental Neurology, 2014, 73, 865-879.	1.7	70
51	Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions. Annals of Neurology, 2014, 75, 810-828.	5.3	41
52	Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: An in vivo [(11)C](R)-PK11195-PET pilot study. Neurobiology of Disease, 2014, 65, 203-210.	4.4	66
53	Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain, 2013, 136, 2888-2903.	7.6	174
54	Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain, 2013, 136, 3596-3608.	7.6	125

#	Article	IF	CITATIONS
55	B-Cell Enrichment and Epstein-Barr Virus Infection in Inflammatory Cortical Lesions in Secondary Progressive Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2013, 72, 29-41.	1.7	98
56	Maternal fatâ€rich diet alters vasodilatation response in adult offspring. FASEB Journal, 2013, 27, 679.3.	0.5	0
57	Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology, 2012, 79, 523-530.	1.1	150
58	Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe Study. Acta Neuropathologica, 2012, 124, 893-903.	7.7	110
59	Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain, 2012, 135, 2925-2937.	7.6	310
60	Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study. Parkinson's Disease, 2012, 2012, 1-16.	1.1	51
61	Innate Immunity in multiple sclerosis white matter lesions: expression of natural cytotoxicity triggering receptor 1 (NCR1). Journal of Neuroinflammation, 2012, 9, 1.	7.2	147
62	Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis. Glia, 2012, 60, 1053-1066.	4.9	75
63	Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathologica, 2012, 123, 873-886.	7.7	83
64	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
65	The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathologica, 2011, 122, 155-170.	7.7	188
66	Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology, 2011, 69, 481-492.	5.3	306
67	Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain, 2011, 134, 534-541.	7.6	186
68	Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain, 2011, 134, 2755-2771.	7.6	685
69	Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands. Journal of Nuclear Medicine, 2011, 52, 24-32.	5.0	330
70	Activated Microglia Mediate Axoglial Disruption That Contributes to Axonal Injury in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1017-1033.	1.7	190
71	Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords. Annals of Neurology, 2010, 68, 465-476.	5.3	109
72	A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Annals of Neurology, 2010, 68, 477-493.	5.3	588

#	Article	IF	CITATIONS
73	Effects of Antemortem and Postmortem Variables on Human Brain mRNA Quality: A BrainNet Europe Study. Journal of Neuropathology and Experimental Neurology, 2010, 69, 70-81.	1.7	139
74	Detection of Epstein–Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain, 2010, 133, e157-e157.	7.6	66
75	Substantial Archaeocortical Atrophy and Neuronal Loss in Multiple Sclerosis. Brain Pathology, 2009, 19, 238-253.	4.1	172
76	Management of a twenty-first century brain bank: experience in the BrainNet Europe consortium. Acta Neuropathologica, 2008, 115, 497-507.	7.7	101
77	Lymphoid chemokines in chronic neuroinflammation. Journal of Neuroimmunology, 2008, 198, 106-112.	2.3	55
78	Human oligodendrocytes express Cx31.3: Function and interactions with Cx32 mutants. Neurobiology of Disease, 2008, 30, 221-233.	4.4	36
79	Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain, 2007, 131, 288-303.	7.6	182
80	Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. Journal of Experimental Medicine, 2007, 204, 2899-2912.	8.5	630
81	The junctional adhesion molecule (JAM) is required for maintaining the integrity and function of myelinated peripheral nerves. FASEB Journal, 2007, 21, A65.	0.5	0
82	Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat. Experimental Neurology, 2006, 197, 373-385.	4.1	98
83	Upregulation of α-synuclein in neurons and glia in inflammatory demyelinating disease. Molecular and Cellular Neurosciences, 2006, 31, 597-612.	2.2	40
84	Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain, 2006, 130, 1089-1104.	7.6	1,142
85	Oligodendroglial Lineage. , 2004, , 289-310.		5
86	NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Molecular and Cellular Neurosciences, 2003, 24, 476-488.	2.2	787
87	Molecular Changes in Normal Appearing White Matter in Multiple Sclerosis are Characteristic of Neuroprotective Mechanisms Against Hypoxic Insult. Brain Pathology, 2003, 13, 554-573.	4.1	202
88	The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. Journal of Neurocytology, 2002, 31, 523-536.	1.5	153
89	Expression of QKI Proteins and MAP1B Identifies Actively Myelinating Oligodendrocytes in Adult Rat Brain. Molecular and Cellular Neurosciences, 2001, 17, 292-302.	2.2	59
90	The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences, 2001, 24, 39-47.	8.6	596

#	Article	IF	CITATIONS
91	The response of adult oligodendrocyte progenitors to demyelination in EAE. Progress in Brain Research, 2001, 132, 165-174.	1.4	53
92	Disturbed oligodendrocyte development and recovery from hypomyelination in a c-myc transgenic mouse mutant. Journal of Neuroscience Research, 2001, 66, 46-58.	2.9	5
93	Increase in HLA-DR Immunoreactive Microglia in Frontal and Temporal Cortex of Chronic Schizophrenics. Journal of Neuropathology and Experimental Neurology, 2000, 59, 137-150.	1.7	294
94	NG2-expressing cells in the central nervous system: Are they oligodendroglial progenitors?. Journal of Neuroscience Research, 2000, 61, 471-479.	2.9	367
95	NG2â€expressing cells in the central nervous system: Are they oligodendroglial progenitors?. Journal of Neuroscience Research, 2000, 61, 471-479.	2.9	7
96	Activation and Proliferation of Endogenous Oligodendrocyte Precursor Cells during Ethidium Bromide-Induced Demyelination. Experimental Neurology, 1999, 160, 333-347.	4.1	243
97	Contrasting effects of mitogenic growth factors on oligodendrocyte precursor cell migration. Glia, 1997, 19, 85-90.	4.9	110
98	Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. , 1997, 47, 455-470.		237
99	A reappraisal of ganglioside GD3 expression in the CNS. , 1996, 16, 291-295.		35
100	Rat cerebral cortical neurons in primary culture release a mitogen specific for early (GD3+/04â^') oligodendroglial progenitors. Journal of Neuroscience Research, 1993, 34, 589-600.	2.9	30
101	Down-regulation of GAP-43 During Oligodendrocyte Development and Lack of Expression by Astrocytes In Vivo: Implications for Macroglial Differentiation. European Journal of Neuroscience, 1991, 3, 876-886.	2.6	75
102	Oligodendroglial and astroglial heterogeneity in mouse primary central nervous system culture as demonstrated by differences in GABA andd-aspartate transport and immunocytochemistry.	1.7	28

Developmental Brain Research, 1987, 36, 13-25.