Songphol Kanjanachuchai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394329/publications.pdf

Version: 2024-02-01

933264 887953 79 461 10 17 citations h-index g-index papers 82 82 82 234 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantum dot integration in heterostructure solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 2968-2974.	3.0	38
2	Self-Running Ga Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Droplets on GaAs (111)A and (111)B Surfaces. ACS (111)A and (1111)B Surfaces	4.0	38
3	Self-assembled quantum-dot molecules by molecular-beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1217.	1.6	26
4	Optimization of stacking high-density quantum dot molecules for photovoltaic effect. Solar Energy Materials and Solar Cells, 2009, 93, 746-749.	3.0	23
5	Directions and Breakup of Self-Running In Droplets on Low-Index InP Surfaces. Crystal Growth and Design, 2014, 14, 830-834.	1.4	18
6	Dislocation-Guided Self-Running Droplets. Crystal Growth and Design, 2015, 15, 14-19.	1.4	14
7	Single-charge tunnelling in n- andp-type strained silicon germanium on silicon-on-insulator. Semiconductor Science and Technology, 1999, 14, 1065-1068.	1.0	13
8	Evolution of self-assembled lateral quantum dot molecules. Journal of Crystal Growth, 2007, 301-302, 812-816.	0.7	13
9	Growth of InAs quantum-dot hatches on InGaAs/GaAs cross-hatch virtual substrates. Microelectronic Engineering, 2007, 84, 1562-1565.	1.1	12
10	Molecular beam epitaxy growth of InSb/GaAs quantum nanostructures. Journal of Crystal Growth, 2017, 477, 30-33.	0.7	11
11	Leakage currents in virtual substrates: measurements and device implications. Semiconductor Science and Technology, 1998, 13, 1215-1218.	1.0	10
12	The effects of relaxed InGaAs virtual substrates on the formation of self-assembled InAs quantum dots. Semiconductor Science and Technology, 2008, 23, 055007.	1.0	10
13	Self-assembled InAs quantum dots on cross-hatch InGaAs templates: Excess growth, growth rate, capping and preferential alignment. Microelectronic Engineering, 2009, 86, 844-849.	1.1	10
14	GaSb and InSb Quantum Nanostructures: Morphologies and Optical Properties. MRS Advances, 2016, 1, 1677-1682.	0.5	10
15	Growth of truncated pyramidal InSb nanostructures on GaAs substrate. Journal of Crystal Growth, 2017, 468, 737-739.	0.7	10
16	Mobility degradation in gated Si:SiGe quantum wells with thermally grown oxides. Electronics Letters, 1995, 31, 1876-1878.	0.5	10
17	Thin-capping-and-regrowth molecular beam epitaxial technique for quantum dots and quantum-dot molecules. Journal of Vacuum Science & Technology B, 2006, 24, 1665.	1.3	9
18	Reliable synthesis of self-running Ga droplets on GaAs (001) in MBE using RHEED patterns. Nanoscale Research Letters, 2015, 10, 184.	3.1	9

#	Article	IF	CITATIONS
19	Coulomb blockade in strained-Si nanowires on leaky virtual substrates. Semiconductor Science and Technology, 2001, 16, 72-76.	1.0	8
20	Evolution of InAs quantum dots grown on cross-hatch substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 806-809.	0.8	8
21	Optical properties of as-grown and annealed InAs quantum dots on InGaAs cross-hatch patterns. Nanoscale Research Letters, 2011, 6, 496.	3.1	8
22	Extended optical properties beyond band-edge of GaAs by InAs quantum dots and quantum dot molecules. Microelectronic Engineering, 2010, 87, 1304-1307.	1.1	7
23	Twin InSb/GaAs quantum nano-stripes: Growth optimization and related properties. Journal of Crystal Growth, 2018, 487, 40-44.	0.7	7
24	Molecular beam epitaxial growth of interdigitated quantum dots for heterojunction solar cells. Journal of Crystal Growth, 2019, 512, 159-163.	0.7	7
25	Effective one-dimensional electronic structure of InGaAs quantum dot molecules. Microelectronic Engineering, 2008, 85, 1225-1228.	1.1	6
26	Nucleation Sequence of InAs Quantum Dots on Cross-Hatch Patterns. Journal of Nanoscience and Nanotechnology, 2011, 11, 10787-10791.	0.9	6
27	Self-assembled InAs quantum dots on anti-phase domains of GaAs on Ge substrates. Journal of Crystal Growth, 2011, 323, 254-258.	0.7	6
28	Self-assembled lateral InAs quantum dot molecules: Dot ensemble control and polarization-dependent photoluminescence. Microelectronic Engineering, 2006, 83, 1526-1529.	1.1	5
29	Improvement of PV Performance by Using Multi-Stacked High Density InAs Quantum Dot Molecules. , 2006, , .		5
30	Aligned quantum dot molecules with 4 satellite dots by self-assembly. Microelectronic Engineering, 2008, 85, 1218-1221.	1.1	5
31	Bimodal optical characteristics of lateral InGaAs quantum dot molecules. Journal of Crystal Growth, 2011, 323, 206-210.	0.7	5
32	Raman and photoluminescence properties of type II GaSb/GaAs quantum dots on (001) Ge substrate. Electronic Materials Letters, 2016, 12, 517-523.	1.0	5
33	Study on Raman spectroscopy of InSb nano-stripes grown on GaSb substrate by molecular beam epitaxy and their Raman peak shift with magnetic field. Journal of Crystal Growth, 2019, 512, 198-202.	0.7	5
34	GaAsPBi epitaxial layer grown by molecular beam epitaxy. Semiconductor Science and Technology, 2020, 35, 095009.	1.0	5
35	Optical properties of lattice-matched GaAsPBi multiple quantum wells grown on GaAs (001). Semiconductor Science and Technology, 2021, 36, 045014.	1.0	5
36	Beyond CMOS: single-electron transistors. , 0, , .		4

#	Article	IF	CITATIONS
37	Ordered quantum dots formation on engineered template by molecular beam epitaxy. Microelectronic Engineering, 2005, 78-79, 349-352.	1.1	4
38	Improved quantum confinement of self-assembled high-density InAs quantum dot molecules in AlGaAsâ^•GaAs quantum well structures by molecular beam epitaxy. Journal of Vacuum Science & Technology B, 2008, 26, 1100.	1.3	4
39	Temperature-dependent photoluminescent characteristics of lateral InGaAs quantum dot molecules. Microelectronic Engineering, 2010, 87, 1352-1356.	1.1	4
40	Excitation transfer in stacked quantum dot chains. Semiconductor Science and Technology, 2015, 30, 055005.	1.0	4
41	Ultrathin epitaxial InAs layer relaxation on cross-hatch stress fields. CrystEngComm, 2016, 18, 5852-5859.	1.3	4
42	Planar Self-Assembly of Submicron and Nanoscale Wires and Grooves on Ill–V(110) Surfaces. Crystal Growth and Design, 2017, 17, 4413-4421.	1.4	4
43	Growth and Photoluminescence Properties of InSb/GaSb Nanoâ€Stripes Grown by Molecular Beam Epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800498.	0.8	4
44	Self-assembled composite quantum dots for photovoltaic applications. , 0, , .		3
45	Chirped InGaAs quantum dot molecules for broadband applications. Nanoscale Research Letters, 2012, 7, 207.	3.1	3
46	Polarization anisotropy of stacked InAs quantum dots on InGaAs/GaAs cross-hatch patterns. Journal of Crystal Growth, 2013, 378, 524-528.	0.7	3
47	Morphology of self-assembled InSb/GaAs quantum dots on Ge substrate. Journal of Crystal Growth, 2017, 468, 541-546.	0.7	3
48	Preferential nucleation, guiding, and blocking of self-propelled droplets by dislocations. Journal of Applied Physics, 2018, 123, 161570.	1.1	3
49	Photoluminescence properties as a function of growth mechanism for GaSb/GaAs quantum dots grown on Ge substrates. Journal of Applied Physics, 2019, 126, .	1.1	3
50	InSb/InAs quantum nano-stripes grown by molecular beam epitaxy and its photoluminescence at mid-infrared wavelength. Journal of Crystal Growth, 2019, 514, 36-39.	0.7	3
51	Au-catalyzed desorption of GaAs oxides. Nanotechnology, 2019, 30, 215703.	1.3	3
52	Investigation of hybrid InSb and GaSb quantum nanostructures. Microelectronic Engineering, 2021, 237, 111494.	1.1	3
53	SELF-ASSEMBLED INDIUM-ARSENIDE ELONGATED NANOSTRUCTURE GROWN BY MOLECULAR BEAM EPITAXY. International Journal of Nanoscience, 2005, 04, 253-259.	0.4	2
54	Hybrid Quantum Cellular Automata memory. , 2008, , .		2

#	Article	IF	CITATIONS
55	Investigation of GaSb/GaAs Quantum Dots Formation on Ge (001) Substrate and Effect of Anti-Phase Domains. MRS Advances, 2016, 1, 1729-1734.	0.5	2
56	Anti-phase domain induced morphological differences of self-assembled InSb/GaAs quantum dots grown on (0†0†1) Ge substrate. Journal of Crystal Growth, 2019, 512, 136-141.	0.7	2
57	In situ observation and control of ultrathin In layers on sublimated InP(100) surfaces. Applied Surface Science, 2021, 542, 148549.	3.1	2
58	Single-hole tunnelling in SiGe nanostructures. Microelectronic Engineering, 1999, 46, 137-140.	1.1	1
59	Growth Control of Twin InSb/GaAs Nano-Stripes by Molecular Beam Epitaxy. MRS Advances, 2017, 2, 2943-2949.	0.5	1
60	Demonstration of Photovoltaic Effects in Hybrid Type-I InAs/GaAs Quantum Dots and Type-II GaSb/GaAs Quantum Dots., 2018,,.		1
61	Investigation of the Morphology of InSb/InAs Quantum Nanostripe Grown by Molecular Beam Epitaxy. Physica Status Solidi (B): Basic Research, 2020, 257, 1900374.	0.7	1
62	GaAs/GaAsPBi core–shell nanowires grown by molecular beam epitaxy. Nanotechnology, 2022, 33, 095602.	1.3	1
63	Nanocrystalline silicon dot displacement using speed-controlled tapping-mode atomic force microscopy. Microelectronic Engineering, 2004, 73-74, 615-619.	1.1	O
64	Regrowth of self-assembled InAs quantum dots on nanohole and stripe templates. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2006, 5, 011008.	1.0	0
65	InAs and InP Quantum Dot Molecules and their Potentials for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2006, 959, 1.	0.1	O
66	The Effects of Substrate Mounds and Pits on the Periodicity of Cross-Hatch Surface and Subsequent Formation of Quantum Dots., 2007,,.		0
67	Self-Assembled InAs Lateral Quantum Dot Molecules Growth on (001) GaAs by Thin-Capping-and-Regrowth MBE Technique. Solid State Phenomena, 2007, 121-123, 395-400.	0.3	O
68	Improved Spectral Response of Quantum Dot Solar Cells Using InAs Multi-stack High Density Quantum Dot Molecules. Materials Research Society Symposia Proceedings, 2010, 1260, 1.	0.1	0
69	Complete formation sequence of InAs quantum dots on lattice-mismatched InGaAs/GaAs substrates. , 2010, , .		O
70	Study on spectral response of schottky-type multi-stack high density quantum dot molecule photovoltaic cells at concentrated light. , $2010, , .$		0
71	Luminescence properties of as-grown and annealed InGaAs quantum dots on cross-hatch patterns. , 2011, , .		O
72	InGaAs Quantum Dots on Cross-Hatch Patterns as a Host for Diluted Magnetic Semiconductor Medium. Journal of Nanomaterials, 2013, 2013, 1-5.	1.5	0

#	Article	IF	CITATIONS
73	Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots. , 2015, , .		O
74	Effects of material intermixing on electronic energy levels in Ga(As)Sb/GaAs quantum dots. , 2016, , .		0
75	Toward quantum state manipulation in twin InSb/GaAs quantum dots. , 2017, , .		O
76	Molecular Beam Epitaxial Growth of InSb and AlSb Heterostructure on InSb Substrates. , 2019, , .		O
77	Growth-related photoluminescence properties of InSb/GaAs self-assembled quantum dots grown on (001) Ge substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115309.	1.7	O
78	Optical Properties of Lateral InGaAs Quantum Dot Molecules Single- and Bi-Layers. Lecture Notes in Nanoscale Science and Technology, 2014, , 51-75.	0.4	0
79	Raman peak shifts by applied magnetic field in $InSb/Al < sub > x < /sub > In < sub > 1a^3x < /sub > Sb superlattices. Materials Research Express, 2020, 7, 105007.$	0.8	0