Songphol Kanjanachuchai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394329/publications.pdf

Version: 2024-02-01

80 papers

461 citations

933447 10 h-index 17 g-index

82 all docs 82 docs citations

times ranked

82

234 citing authors

#	Article	IF	CITATIONS
1	GaAs/GaAsPBi core–shell nanowires grown by molecular beam epitaxy. Nanotechnology, 2022, 33, 095602.	2.6	1
2	In situ observation and control of ultrathin In layers on sublimated InP(100) surfaces. Applied Surface Science, 2021, 542, 148549.	6.1	2
3	Investigation of hybrid InSb and GaSb quantum nanostructures. Microelectronic Engineering, 2021, 237, 111494.	2.4	3
4	Optical properties of lattice-matched GaAsPBi multiple quantum wells grown on GaAs (001). Semiconductor Science and Technology, 2021, 36, 045014.	2.0	5
5	Growth-related photoluminescence properties of InSb/GaAs self-assembled quantum dots grown on (001) Ge substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115309.	3.5	O
6	Investigation of the Morphology of InSb/InAs Quantum Nanostripe Grown by Molecular Beam Epitaxy. Physica Status Solidi (B): Basic Research, 2020, 257, 1900374.	1.5	1
7	GaAsPBi epitaxial layer grown by molecular beam epitaxy. Semiconductor Science and Technology, 2020, 35, 095009.	2.0	5
8	Raman peak shifts by applied magnetic field in InSb/Al $<$ sub $>$ x $<$ /sub $>$ In $<$ sub $>$ 1â $^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	1.6	0
9	Photoluminescence properties as a function of growth mechanism for GaSb/GaAs quantum dots grown on Ge substrates. Journal of Applied Physics, 2019, 126, .	2.5	3
10	InSb/InAs quantum nano-stripes grown by molecular beam epitaxy and its photoluminescence at mid-infrared wavelength. Journal of Crystal Growth, 2019, 514, 36-39.	1.5	3
11	Au-catalyzed desorption of GaAs oxides. Nanotechnology, 2019, 30, 215703.	2.6	3
12	Molecular beam epitaxial growth of interdigitated quantum dots for heterojunction solar cells. Journal of Crystal Growth, 2019, 512, 159-163.	1.5	7
13	Anti-phase domain induced morphological differences of self-assembled InSb/GaAs quantum dots grown on (0â€⁻0â€⁻1) Ge substrate. Journal of Crystal Growth, 2019, 512, 136-141.	1.5	2
14	Study on Raman spectroscopy of InSb nano-stripes grown on GaSb substrate by molecular beam epitaxy and their Raman peak shift with magnetic field. Journal of Crystal Growth, 2019, 512, 198-202.	1.5	5
15	Molecular Beam Epitaxial Growth of InSb and AlSb Heterostructure on InSb Substrates. , 2019, , .		O
16	Growth and Photoluminescence Properties of InSb/GaSb Nanoâ€5tripes Grown by Molecular Beam Epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800498.	1.8	4
17	Twin InSb/GaAs quantum nano-stripes: Growth optimization and related properties. Journal of Crystal Growth, 2018, 487, 40-44.	1.5	7
18	Preferential nucleation, guiding, and blocking of self-propelled droplets by dislocations. Journal of Applied Physics, 2018, 123, 161570.	2.5	3

#	Article	IF	CITATIONS
19	Demonstration of Photovoltaic Effects in Hybrid Type-I InAs/GaAs Quantum Dots and Type-II GaSb/GaAs Quantum Dots. , 2018, , .		1
20	Morphology of self-assembled InSb/GaAs quantum dots on Ge substrate. Journal of Crystal Growth, 2017, 468, 541-546.	1.5	3
21	Growth of truncated pyramidal InSb nanostructures on GaAs substrate. Journal of Crystal Growth, 2017, 468, 737-739.	1.5	10
22	Molecular beam epitaxy growth of InSb/GaAs quantum nanostructures. Journal of Crystal Growth, 2017, 477, 30-33.	1.5	11
23	Planar Self-Assembly of Submicron and Nanoscale Wires and Grooves on Ill–V(110) Surfaces. Crystal Growth and Design, 2017, 17, 4413-4421.	3.0	4
24	Growth Control of Twin InSb/GaAs Nano-Stripes by Molecular Beam Epitaxy. MRS Advances, 2017, 2, 2943-2949.	0.9	1
25	Toward quantum state manipulation in twin InSb/GaAs quantum dots., 2017,,.		0
26	Ultrathin epitaxial InAs layer relaxation on cross-hatch stress fields. CrystEngComm, 2016, 18, 5852-5859.	2.6	4
27	GaSb and InSb Quantum Nanostructures: Morphologies and Optical Properties. MRS Advances, 2016, 1, 1677-1682.	0.9	10
28	Raman and photoluminescence properties of type II GaSb/GaAs quantum dots on (001) Ge substrate. Electronic Materials Letters, 2016, 12, 517-523.	2.2	5
29	Effects of material intermixing on electronic energy levels in Ga(As)Sb/GaAs quantum dots. , 2016, , .		О
30	Investigation of GaSb/GaAs Quantum Dots Formation on Ge (001) Substrate and Effect of Anti-Phase Domains. MRS Advances, 2016, 1, 1729-1734.	0.9	2
31	Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots., 2015,,.		O
32	Reliable synthesis of self-running Ga droplets on GaAs (001) in MBE using RHEED patterns. Nanoscale Research Letters, 2015, 10, 184.	5.7	9
33	Dislocation-Guided Self-Running Droplets. Crystal Growth and Design, 2015, 15, 14-19.	3.0	14
34	Excitation transfer in stacked quantum dot chains. Semiconductor Science and Technology, 2015, 30, 055005.	2.0	4
35	Directions and Breakup of Self-Running In Droplets on Low-Index InP Surfaces. Crystal Growth and Design, 2014, 14, 830-834.	3.0	18
36	Optical Properties of Lateral InGaAs Quantum Dot Molecules Single- and Bi-Layers. Lecture Notes in Nanoscale Science and Technology, 2014, , 51-75.	0.8	0

#	Article	IF	Citations
37	Polarization anisotropy of stacked InAs quantum dots on InGaAs/GaAs cross-hatch patterns. Journal of Crystal Growth, 2013, 378, 524-528.	1.5	3
38	Self-Running Ga Droplets on GaAs (111)A and (111)B Surfaces. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7709-7713.	8.0	38
39	InGaAs Quantum Dots on Cross-Hatch Patterns as a Host for Diluted Magnetic Semiconductor Medium. Journal of Nanomaterials, 2013, 2013, 1-5.	2.7	O
40	Chirped InGaAs quantum dot molecules for broadband applications. Nanoscale Research Letters, 2012, 7, 207.	5.7	3
41	Nucleation Sequence of InAs Quantum Dots on Cross-Hatch Patterns. Journal of Nanoscience and Nanotechnology, 2011, 11, 10787-10791.	0.9	6
42	Optical properties of as-grown and annealed InAs quantum dots on InGaAs cross-hatch patterns. Nanoscale Research Letters, 2011, 6, 496.	5.7	8
43	Bimodal optical characteristics of lateral InGaAs quantum dot molecules. Journal of Crystal Growth, 2011, 323, 206-210.	1.5	5
44	Self-assembled InAs quantum dots on anti-phase domains of GaAs on Ge substrates. Journal of Crystal Growth, 2011, 323, 254-258.	1.5	6
45	Luminescence properties of as-grown and annealed InGaAs quantum dots on cross-hatch patterns. , $2011, \ldots$		O
46	Temperature-dependent photoluminescent characteristics of lateral InGaAs quantum dot molecules. Microelectronic Engineering, 2010, 87, 1352-1356.	2.4	4
47	Extended optical properties beyond band-edge of GaAs by InAs quantum dots and quantum dot molecules. Microelectronic Engineering, 2010, 87, 1304-1307.	2.4	7
48	Improved Spectral Response of Quantum Dot Solar Cells Using InAs Multi-stack High Density Quantum Dot Molecules. Materials Research Society Symposia Proceedings, 2010, 1260, 1.	0.1	0
49	Complete formation sequence of InAs quantum dots on lattice-mismatched InGaAs/GaAs substrates. , 2010, , .		O
50	Study on spectral response of schottky-type multi-stack high density quantum dot molecule photovoltaic cells at concentrated light., 2010,,.		0
51	Evolution of InAs quantum dots grown on cross-hatch substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 806-809.	0.8	8
52	Optimization of stacking high-density quantum dot molecules for photovoltaic effect. Solar Energy Materials and Solar Cells, 2009, 93, 746-749.	6.2	23
53	Self-assembled InAs quantum dots on cross-hatch InGaAs templates: Excess growth, growth rate, capping and preferential alignment. Microelectronic Engineering, 2009, 86, 844-849.	2.4	10
54	Effective one-dimensional electronic structure of InGaAs quantum dot molecules. Microelectronic Engineering, 2008, 85, 1225-1228.	2.4	6

#	Article	IF	CITATIONS
55	Aligned quantum dot molecules with 4 satellite dots by self-assembly. Microelectronic Engineering, 2008, 85, 1218-1221.	2.4	5
56	The effects of relaxed InGaAs virtual substrates on the formation of self-assembled InAs quantum dots. Semiconductor Science and Technology, 2008, 23, 055007.	2.0	10
57	Improved quantum confinement of self-assembled high-density InAs quantum dot molecules in AlGaAsâ^•GaAs quantum well structures by molecular beam epitaxy. Journal of Vacuum Science & Technology B, 2008, 26, 1100.	1.3	4
58	Hybrid Quantum Cellular Automata memory. , 2008, , .		2
59	The Effects of Substrate Mounds and Pits on the Periodicity of Cross-Hatch Surface and Subsequent Formation of Quantum Dots., 2007,,.		О
60	Self-Assembled InAs Lateral Quantum Dot Molecules Growth on (001) GaAs by Thin-Capping-and-Regrowth MBE Technique. Solid State Phenomena, 2007, 121-123, 395-400.	0.3	0
61	Evolution of self-assembled lateral quantum dot molecules. Journal of Crystal Growth, 2007, 301-302, 812-816.	1.5	13
62	Growth of InAs quantum-dot hatches on InGaAs/GaAs cross-hatch virtual substrates. Microelectronic Engineering, 2007, 84, 1562-1565.	2.4	12
63	Self-assembled lateral InAs quantum dot molecules: Dot ensemble control and polarization-dependent photoluminescence. Microelectronic Engineering, 2006, 83, 1526-1529.	2.4	5
64	Quantum dot integration in heterostructure solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 2968-2974.	6.2	38
65	Improvement of PV Performance by Using Multi-Stacked High Density InAs Quantum Dot Molecules. , 2006, , .		5
66	Thin-capping-and-regrowth molecular beam epitaxial technique for quantum dots and quantum-dot molecules. Journal of Vacuum Science & Technology B, 2006, 24, 1665.	1.3	9
67	Regrowth of self-assembled InAs quantum dots on nanohole and stripe templates. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2006, 5, 011008.	0.9	O
68	InAs and InP Quantum Dot Molecules and their Potentials for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2006, 959, 1.	0.1	0
69	Ordered quantum dots formation on engineered template by molecular beam epitaxy. Microelectronic Engineering, 2005, 78-79, 349-352.	2.4	4
70	Self-assembled quantum-dot molecules by molecular-beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1217.	1.6	26
71	SELF-ASSEMBLED INDIUM-ARSENIDE ELONGATED NANOSTRUCTURE GROWN BY MOLECULAR BEAM EPITAXY. International Journal of Nanoscience, 2005, 04, 253-259.	0.7	2
72	Nanocrystalline silicon dot displacement using speed-controlled tapping-mode atomic force microscopy. Microelectronic Engineering, 2004, 73-74, 615-619.	2.4	0

#	Article	IF	CITATIONS
73	Nanocrystalline silicon dot displacement using speed-controlled tapping-mode atomic force microscopy. Microelectronic Engineering, 2004, 73-74, 615-619.	2.4	O
74	Coulomb blockade in strained-Si nanowires on leaky virtual substrates. Semiconductor Science and Technology, 2001, 16, 72-76.	2.0	8
75	Single-charge tunnelling in n- andp-type strained silicon germanium on silicon-on-insulator. Semiconductor Science and Technology, 1999, 14, 1065-1068.	2.0	13
76	Single-hole tunnelling in SiGe nanostructures. Microelectronic Engineering, 1999, 46, 137-140.	2.4	1
77	Leakage currents in virtual substrates: measurements and device implications. Semiconductor Science and Technology, 1998, 13, 1215-1218.	2.0	10
78	Mobility degradation in gated Si:SiGe quantum wells with thermally grown oxides. Electronics Letters, 1995, 31, 1876-1878.	1.0	10
79	Self-assembled composite quantum dots for photovoltaic applications. , 0, , .		3
80	Beyond CMOS: single-electron transistors. , 0, , .		4