Prashant Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature, 2017, 543, 690-694.	13.7	446
2	Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361, 1008-1011.	6.0	324
3	Emergence of complexity in hierarchically organized chiral particles. Science, 2020, 368, 642-648.	6.0	179
4	Selfâ€Pillared, Singleâ€Unitâ€Cell Snâ€MFI Zeolite Nanosheets and Their Use for Glucose and Lactose Isomerization. Angewandte Chemie - International Edition, 2015, 54, 10848-10851.	7.2	138
5	On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes. Journal of Membrane Science, 2018, 549, 312-320.	4.1	116
6	Openâ€Pore Twoâ€Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbonâ€Isomerâ€Selective Membranes on Porous Polymer Supports. Angewandte Chemie - International Edition, 2016, 55, 7184-7187.	7.2	100
7	One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport. Nature Materials, 2020, 19, 443-449.	13.3	91
8	Self-Assembly of Chiral Nanoparticles into Semiconductor Helices with Tunable near-Infrared Optical Activity. Chemistry of Materials, 2020, 32, 476-488.	3.2	79
9	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie - International Edition, 2018, 57, 4926-4930.	7.2	73
10	Enantiomeric Discrimination by Surfaceâ€Enhanced Raman Scattering–Chiral Anisotropy of Chiral Nanostructured Gold Films. Angewandte Chemie - International Edition, 2020, 59, 15226-15231.	7.2	70
11	2D Zeolite Coatings: Langmuir–Schaefer Deposition of 3â€nm Thick MFI Zeolite Nanosheets. Angewandte Chemie - International Edition, 2015, 54, 6571-6575.	7.2	67
12	A high-performance adsorbent for hydrogen sulfide removal. Microporous and Mesoporous Materials, 2014, 190, 152-155.	2.2	63
13	Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electronâ€Beamâ€Induced Amorphization. Angewandte Chemie - International Edition, 2018, 57, 13592-13597.	7.2	57
14	Factors Governing the Formation of Hierarchically and Sequentially Intergrown MFI Zeolites by Using Simple Diquaternary Ammonium Structure-Directing Agents. Chemistry of Materials, 2016, 28, 8997-9007.	3.2	41
15	Pillared Snâ€MWW Prepared by a Solidâ€Stateâ€Exchange Method and its Use as a Lewis Acid Catalyst. ChemCatChem, 2016, 8, 1274-1278.	1.8	40
16	Direct Synthesis of 7 nm-Thick Zinc(II)–Benzimidazole–Acetate Metal–Organic Framework Nanosheets. Chemistry of Materials, 2018, 30, 69-73.	3.2	40
17	Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets. Nature Communications, 2015, 6, 7128.	5.8	39
18	Mechanisms of plasticity in near-theoretical strength sub-100 nm Si nanocubes. Acta Materialia, 2015, 100, 256-265.	3.8	38

Prashant Kumar

#	Article	IF	CITATIONS
19	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie, 2018, 130, 5020-5024.	1.6	30
20	Enantiomeric Discrimination by Surfaceâ€Enhanced Raman Scattering–Chiral Anisotropy of Chiral Nanostructured Gold Films. Angewandte Chemie, 2020, 132, 15338-15343.	1.6	22
21	Epitaxial growth: rapid synthesis of highly permeable and selective zeolite-T membranes. Journal of Materials Chemistry A, 2017, 5, 17828-17832.	5.2	17
22	Two Distinct Stages of Structural Modification of ZIF-L MOF under Electron-Beam Irradiation. Chemistry of Materials, 2021, 33, 5681-5689.	3.2	16
23	Nucleation, Growth, and Robust Synthesis of SPP Zeolite: Effect of Ethanol, Sodium, and Potassium. Topics in Catalysis, 2015, 58, 545-558.	1.3	15
24	Electron-Beam-Damage in Metal Organic Frameworks in the TEM. Microscopy and Microanalysis, 2019, 25, 1704-1705.	0.2	10
25	Openâ€Pore Twoâ€Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbonâ€Isomerâ€Selective Membranes on Porous Polymer Supports. Angewandte Chemie, 2016, 128, 7300-7303.	1.6	9
26	Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales. AICHE Journal, 2022, 68, e17438.	1.8	9
27	Direct Synthesis and Pseudomorphic Transformation of Mixed Metal Oxide Nanostructures with Non loseâ€Packed Hollow Sphere Arrays. Angewandte Chemie - International Edition, 2018, 57, 15707-15711.	7.2	7
28	Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electronâ€Beamâ€Induced Amorphization. Angewandte Chemie, 2018, 130, 13780-13785.	1.6	6
29	Direct Synthesis and Pseudomorphic Transformation of Mixed Metal Oxide Nanostructures with Nonâ€Closeâ€Packed Hollow Sphere Arrays. Angewandte Chemie, 2018, 130, 15933-15937.	1.6	3
30	Atomic and Electronic Structure Evolution of ZIF-L Metal Organic Framework During Amorphization. Microscopy and Microanalysis, 2020, 26, 2968-2969.	0.2	3
31	Real-Time 3D Analysis During Tomographic Experiments on tomviz. Microscopy and Microanalysis, 2021, 27, 2860-2862.	0.2	2
32	Structural Rearrangement of 2-D Zeolite Nanosheets under Electron Beam. Microscopy and Microanalysis, 2015, 21, 1323-1324.	0.2	1
33	Characterization of MEL defects in 2 - Dimensional MFI nanosheets. Microscopy and Microanalysis, 2017, 23, 1802-1803.	0.2	1
34	Crystallographic Structure Determination of MFI-Zeolite Nanosheets. Microscopy and Microanalysis, 2014, 20, 390-391.	0.2	0
35	Probing Structure-Property Relationship of Active Metal Nanoparticles on Mesoporous Silica Sorbent. Microscopy and Microanalysis, 2014, 20, 464-465.	0.2	0
36	Analytical Method for Thickness and Wrinkling Measurements of 2-D Zeolites. Microscopy and Microanalysis, 2015, 21, 2367-2368.	0.2	0

#	Article	IF	CITATIONS
37	Titelbild: Openâ€Pore Twoâ€Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbonâ€Isomerâ€Selective Membranes on Porous Polymer Supports (Angew. Chem. 25/2016). Angewandte Chemie, 2016, 128, 7123-7123.	1.6	0
38	Atomic Structure of Self-Pillared, Single-Unit-Cell Sn-MFI Zeolite Nanosheets. Microscopy and Microanalysis, 2016, 22, 1616-1617.	0.2	0
39	Observation of MEL stacking faults in two-dimensional MFI zeolite nanosheets. Microscopy and Microanalysis, 2016, 22, 1634-1635.	0.2	0
40	Early Growth Stages of Directly Synthesized Large-Area Zeolite Nanosheets. Microscopy and Microanalysis, 2017, 23, 1986-1987.	0.2	0
41	Sulfidation-Oxidation Cycling of a H2S Adsorbing Hollow Sphere Array. Microscopy and Microanalysis, 2018, 24, 1800-1801.	0.2	0
42	Identification and Implication of One-dimensional Intergrowths in Beam-sensitive Two-dimensional MFI Zeolite Nanosheets. Microscopy and Microanalysis, 2020, 26, 164-165.	0.2	0