
Stephen s S Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394094/publications.pdf Version: 2024-02-01

STEDHENÂS S TAVLOD

#	Article	IF	CITATIONS
1	DNA replication stress and emerging prospects for PARG inhibitors in ovarian cancer therapy. Progress in Biophysics and Molecular Biology, 2021, 163, 160-170.	1.4	12
2	Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes. Genome Medicine, 2021, 13, 140.	3.6	49
3	<i>TP53</i> loss initiates chromosomal instability in fallopian tube epithelial cells. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	17
4	Replication catastrophe is responsible for intrinsic PAR glycohydrolase inhibitor-sensitivity in patient-derived ovarian cancer models. Journal of Experimental and Clinical Cancer Research, 2021, 40, 323.	3.5	12
5	Inhibitors of the Bub1 spindle assembly checkpoint kinase: synthesis of BAY-320 and comparison with 20H-BNPP1. Royal Society Open Science, 2021, 8, 210854.	1.1	2
6	Targeted nanopore sequencing for the identification of ABCB1 promoter translocations in cancer. BMC Cancer, 2020, 20, 1075.	1.1	6
7	Human spermbots for patient-representative 3D ovarian cancer cell treatment. Nanoscale, 2020, 12, 20467-20481.	2.8	31
8	A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity. Nature Communications, 2020, 11, 822.	5.8	62
9	Oncogenic MYC amplifies mitotic perturbations. Open Biology, 2019, 9, 190136.	1.5	29
10	DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors. Cancer Cell, 2019, 35, 519-533.e8.	7.7	79
11	The p38α Stress Kinase Suppresses Aneuploidy Tolerance by Inhibiting Hif-1α. Cell Reports, 2018, 25, 749-760.e6.	2.9	26
12	Inhibition of Bcl-xL sensitizes cells to mitotic blockers, but not mitotic drivers. Open Biology, 2016, 6, 160134.	1.5	28
13	Mcl-1 dynamics influence mitotic slippage and death in mitosis. Oncotarget, 2016, 7, 5176-5192.	0.8	59
14	MYC Is a Major Determinant of Mitotic Cell Fate. Cancer Cell, 2015, 28, 129-140.	7.7	110
15	Glucocorticoid receptor regulates accurate chromosome segregation and is associated with malignancy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5479-5484.	3.3	48
16	Cenp-E inhibitor GSK923295: Novel synthetic route and use as a tool to generate aneuploidy. Oncotarget, 2015, 6, 20921-20932.	0.8	42
17	Mitotic entry: Non-genetic heterogeneity exposes the requirement for Plk1. Oncotarget, 2015, 6, 36472-36488.	0.8	11
18	Mitosis and apoptosis: how is the balance set?. Current Opinion in Cell Biology, 2013, 25, 780-785.	2.6	155

2

STEPHENÂS S TAYLOR

#	Article	IF	CITATIONS
19	The Spindle Assembly Checkpoint. Current Biology, 2012, 22, R966-R980.	1.8	643
20	Cohesion Fatigue Explains Why Pharmacological Inhibition of the APC/C Induces a Spindle Checkpoint-Dependent Mitotic Arrest. PLoS ONE, 2012, 7, e49041.	1.1	40
21	p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. Journal of Cell Science, 2011, 124, 3905-3916.	1.2	116
22	BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. Journal of Cell Science, 2011, 124, 4332-4345.	1.2	103
23	Re-evaluating the role of Tao1 in the spindle checkpoint. Chromosoma, 2010, 119, 371-379.	1.0	32
24	Defining the role of APC in the mitotic spindle checkpoint in vivo: APC-deficient cells are resistant to Taxol. Oncogene, 2010, 29, 6418-6427.	2.6	29
25	Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1–C-Mad2 core complex. Journal of Cell Biology, 2010, 190, 25-34.	2.3	284
26	Cdc20 is required for the post-anaphase, KEN-dependent degradation of centromere protein F. Journal of Cell Science, 2010, 123, 321-330.	1.2	51
27	Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis. Journal of Cell Science, 2010, 123, 653-659.	1.2	47
28	Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. Journal of Cell Biology, 2010, 190, 73-87.	2.3	447
29	Inactivating the spindle checkpoint kinase Bub1 during embryonic development results in a global shutdown of proliferation. BMC Research Notes, 2009, 2, 190.	0.6	9
30	Regulation of APC/C Activity in Oocytes by a Bub1-Dependent Spindle Assembly Checkpoint. Current Biology, 2009, 19, 369-380.	1.8	194
31	Mitotic drivers—inhibitors of the Aurora B Kinase. Cancer and Metastasis Reviews, 2009, 28, 185-195.	2.7	66
32	The Aurora B kinase activity is required for the maintenance of the differentiated state of murine myoblasts. Cell Death and Differentiation, 2009, 16, 321-330.	5.0	51
33	How do anti-mitotic drugs kill cancer cells?. Journal of Cell Science, 2009, 122, 2579-2585.	1.2	321
34	Molecular Basis of Drug Resistance in Aurora Kinases. Chemistry and Biology, 2008, 15, 552-562.	6.2	106
35	Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature, 2008, 455, 119-123.	13.7	596
36	Cancer Cells Display Profound Intra- and Interline Variation following Prolonged Exposure to Antimitotic Drugs. Cancer Cell, 2008, 14, 111-122.	7.7	724

STEPHENÂS S TAYLOR

#	Article	IF	CITATIONS
37	Polo and Aurora kinases—lessons derived from chemical biology. Current Opinion in Cell Biology, 2008, 20, 77-84.	2.6	123
38	Mitochondrial Targeting of Adenomatous Polyposis Coli Protein Is Stimulated by Truncating Cancer Mutations. Journal of Biological Chemistry, 2008, 283, 5950-5959.	1.6	34
39	Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores. Journal of Cell Biology, 2008, 181, 893-901.	2.3	165
40	Comment on "A Centrosome-Independent Role for Â-TuRC Proteins in the Spindle Assembly Checkpoint". Science, 2007, 316, 982b-982b.	6.0	2
41	Protein Phosphatase 2A and Separase Form a Complex Regulated by Separase Autocleavage*. Journal of Biological Chemistry, 2007, 282, 24623-24632.	1.6	39
42	Bub1 Maintains Centromeric Cohesion by Activation of the Spindle Checkpoint. Developmental Cell, 2007, 13, 566-579.	3.1	120
43	GSK-3 inhibitors induce chromosome instability. BMC Cell Biology, 2007, 8, 34.	3.0	81
44	Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nature Chemical Biology, 2007, 3, 739-744.	3.9	260
45	Cenp-F Links Kinetochores to Ndel1/Nde1/Lis1/Dynein Microtubule Motor Complexes. Current Biology, 2007, 17, 1173-1179.	1.8	148
46	Bub1 Up-Regulation and Hyperphosphorylation Promote Malignant Transformation in SV40 Tag–Induced Transgenic Mouse Models. Molecular Cancer Research, 2006, 4, 957-969.	1.5	13
47	Validating Aurora B as an anti-cancer drug target. Journal of Cell Science, 2006, 119, 3664-3675.	1.2	280
48	Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction. Journal of Cell Science, 2006, 119, 3325-3336.	1.2	91
49	The Ipl1/Aurora Kinase Family: Methods of Inhibition and Functional Analysis in Mammalian Cells. , 2005, 296, 371-382.		13
50	Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. Journal of Cell Science, 2005, 118, 4889-4900.	1.2	99
51	Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. Journal of Cell Science, 2005, 118, 3639-3652.	1.2	162
52	The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes and Development, 2005, 19, 472-488.	2.7	316
53	Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. Journal of Cell Science, 2004, 117, 6339-6353.	1.2	199
54	Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. Journal of Cell Science, 2004, 117, 1577-1589.	1.2	304

STEPHENÂS S TAYLOR

#	Article	IF	CITATIONS
55	Aurora-kinase inhibitors as anticancer agents. Nature Reviews Cancer, 2004, 4, 927-936.	12.8	617
56	The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation. Chromosome Research, 2004, 12, 599-616.	1.0	120
57	Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. Journal of Cell Biology, 2003, 161, 267-280.	2.3	1,117
58	Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. Journal of Cell Science, 2002, 115, 3403-3414.	1.2	121
59	Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. Journal of Cell Science, 2002, 115, 3403-14.	1.2	101
60	Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Reports, 2001, 2, 609-614.	2.0	149
61	Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. Journal of Cell Science, 2001, 114, 4385-4395.	1.2	186
62	A Visual Screen of a Gfp-Fusion Library Identifies a New Type of Nuclear Envelope Membrane Protein. Journal of Cell Biology, 1999, 146, 29-44.	2.3	172
63	Chromosome segregation: Dual control ensures fidelity. Current Biology, 1999, 9, R562-R564.	1.8	34
64	The Human Homologue of Bub3 Is Required for Kinetochore Localization of Bub1 and a Mad3/Bub1-related Protein Kinase. Journal of Cell Biology, 1998, 142, 1-11.	2.3	421
65	Kinetochore Localization of Murine Bub1 Is Required for Normal Mitotic Timing and Checkpoint Response to Spindle Damage. Cell, 1997, 89, 727-735.	13.5	530
66	Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells. Chromosoma, 1996, 105, 70-81.	1.0	35
67	A method for linking yeast artificial chromosomes. Nucleic Acids Research, 1996, 24, 4192-4196.	6.5	10
68	Addition of functional human telomeres to YACs. Human Molecular Genetics, 1994, 3, 1383-1386.	1.4	16