Alexandre Mo Campos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394072/publications.pdf

Version: 2024-02-01

89 papers

2,307 citations

257450 24 h-index 243625 44 g-index

90 all docs 90 docs citations

90 times ranked 2538 citing authors

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Microcystin Toxicity in Animal Cells. International Journal of Molecular Sciences, 2010, 11, 268-287.	4.1	440
2	Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. Environmental Research, 2017, 153, 191-204.	7. 5	101
3	Proteomic research in bivalves. Journal of Proteomics, 2012, 75, 4346-4359.	2.4	94
4	Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotoxicology and Environmental Safety, 2011, 74, 1973-1980.	6.0	82
5	Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicology and Environmental Safety, 2015, 116, 59-67.	6.0	67
6	Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. Aquatic Toxicology, 2011, 101, 109-116.	4.0	65
7	Exposure of Lycopersicon Esculentum to Microcystin-LR: Effects in the Leaf Proteome and Toxin Translocation from Water to Leaves and Fruits. Toxins, 2014, 6, 1837-1854.	3.4	50
8	New Insights on the Mode of Action of Microcystins in Animal Cells - A Review. Mini-Reviews in Medicinal Chemistry, 2016, 16, 1032-1041.	2.4	49
9	Proteomic investigation of the effects of weight loss in the gastrocnemius muscle of wild and NZW rabbits via 2Dâ€electrophoresis and MALDIâ€₹OF MS. Animal Genetics, 2010, 41, 260-272.	1.7	47
10	Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia, 2013, 705, 27-42.	2.0	44
11	Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Ecotoxicology and Environmental Safety, 2013, 94, 45-53.	6.0	43
12	The effect of chronic kidney disease on the urine proteome in the domestic cat (Felis catus). Veterinary Journal, 2015, 204, 73-81.	1.7	41
13	Shotgun analysis of the marine mussel <i>Mytilus edulis</i> hemolymph proteome and mapping the innate immunity elements. Proteomics, 2015, 15, 4021-4029.	2.2	40
14	Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic Sea microcosm. Journal of Proteomics, 2016, 137, 97-106.	2.4	39
15	New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS. Toxins, 2018, 10, 406.	3.4	38
16	Mode of action and fate of microcystins in the complex soil-plant ecosystems. Chemosphere, 2019, 225, 270-281.	8.2	37
17	A draft genome sequence of the elusive giant squid, Architeuthis dux. GigaScience, 2020, 9, .	6.4	37
18	Proteins associated with cork formation in Quercus suber L. stem tissues. Journal of Proteomics, 2011, 74, 1266-1278.	2.4	35

#	Article	IF	CITATIONS
19	Analysis of the use of microcystin-contaminated water in the growth and nutritional quality of the root-vegetable, Daucus carota. Environmental Science and Pollution Research, 2017, 24, 752-764.	5.3	35
20	Comparative Analysis of the Adhesive Proteins of the Adult Stalked Goose Barnacle Pollicipes pollicipes (Cirripedia: Pedunculata). Marine Biotechnology, 2019, 21, 38-51.	2.4	33
21	Identification of bacterial protein markers and enolase as a plant response protein in the infection of Olea europaea subsp. europaea by Pseudomonas savastanoi pv. savastanoi. European Journal of Plant Pathology, 2009, 125, 603-616.	1.7	29
22	Proteomic Profiling of Cytosolic Glutathione Transferases from Three Bivalve Species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea. International Journal of Molecular Sciences, 2014, 15, 1887-1900.	4.1	29
23	Early physiological and biochemical responses of rice seedlings to low concentration of microcystin-LR. Ecotoxicology, 2014, 23, 107-121.	2.4	29
24	Characterisation of Zea mays L. plastidial transglutaminase: interactions with thylakoid membrane proteins. Plant Biology, 2010, 12, 708-716.	3.8	28
25	Cytotoxicity of portoamides in human cancer cells and analysis of the molecular mechanisms of action. PLoS ONE, 2017, 12, e0188817.	2.5	25
26	Analysis of the Use of Cylindrospermopsin and/or Microcystin-Contaminated Water in the Growth, Mineral Content, and Contamination of Spinacia oleracea and Lactuca sativa. Toxins, 2019, 11, 624.	3.4	25
27	Protein extraction and twoâ€dimensional gel electrophoresis of proteins in the marine mussel <i>Mytilus galloprovincialis</i> : an important tool for protein expression studies, food quality and safety assessment. Journal of the Science of Food and Agriculture, 2013, 93, 1779-1787.	3.5	24
28	Effects of storage, processing and proteolytic digestion on microcystin-LR concentration in edible clams. Food and Chemical Toxicology, 2014, 66, 217-223.	3.6	23
29	Proteomic Analyses of the Unexplored Sea Anemone Bunodactis verrucosa. Marine Drugs, 2018, 16, 42.	4.6	23
30	Glutathione Transferases Responses Induced by Microcystin-LR in the Gills and Hepatopancreas of the Clam Venerupis philippinarum. Toxins, 2015, 7, 2096-2120.	3.4	22
31	A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Marine Drugs, 2019, 17, 111.	4.6	22
32	Purification and in vitro refolding of maize chloroplast transglutaminase over-expressed in Escherichia coli. Biotechnology Letters, 2007, 29, 1255-1262.	2.2	21
33	Biochemical and growth performance of the aquatic macrophyte Azolla filiculoides to sub-chronic exposure to cylindrospermopsin. Ecotoxicology, 2015, 24, 1848-1857.	2.4	21
34	Structure-Antifouling Activity Relationship and Molecular Targets of Bio-Inspired(thio)xanthones. Biomolecules, 2020, 10, 1126.	4.0	21
35	Impacts of Microcystins on Morphological and Physiological Parameters of Agricultural Plants: A Review. Plants, 2021, 10, 639.	3.5	21
36	Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: A concentration-dependent response. Phytochemistry, 2015, 110, 91-103.	2.9	20

#	Article	IF	Citations
37	Establishment of a proteomic reference map for the gastrocnemius muscle in the rabbit (Oryctolagus) Tj ETQq1 1	l 0.784314 1.9	rgBT /Ov <mark>erl</mark>
38	Proteomic profiling of gill GSTs in Mytilus galloprovincialis from the North of Portugal and Galicia evidences variations at protein isoform level with a possible relation with water quality. Marine Environmental Research, 2015, 110, 152-161.	2.5	19
39	Essential oils from Moroccan plants as promising ecofriendly tools to control toxic cyanobacteria blooms. Industrial Crops and Products, 2020, 143, 111922.	5.2	19
40	Proteomic analysis of anatoxin-a acute toxicity in zebrafish reveals gender specific responses and additional mechanisms of cell stress. Ecotoxicology and Environmental Safety, 2015, 120, 93-101.	6.0	18
41	Insights into the potential of picoplanktonic marine cyanobacteria strains for cancer therapies – Cytotoxic mechanisms against the RKO colon cancer cell line. Toxicon, 2016, 119, 140-151.	1.6	18
42	The interactive effects of microcystin-LR and cylindrospermopsin on the growth rate of the freshwater algae Chlorella vulgaris. Ecotoxicology, 2016, 25, 745-758.	2.4	18
43	Assessment of Constructed Wetlands' Potential for the Removal of Cyanobacteria and Microcystins (MC-LR). Water (Switzerland), 2020, 12, 10.	2.7	18
44	OMICs Approaches in Diarrhetic Shellfish Toxins Research. Toxins, 2020, 12, 493.	3.4	17
45	Analysis of Pelagia noctiluca proteome Reveals a Red Fluorescent Protein, a Zinc Metalloproteinase and a Peroxiredoxin. Protein Journal, 2017, 36, 77-97.	1.6	16
46	Effects of microcystin-LR on Saccharomyces cerevisiae growth, oxidative stress and apoptosis. Toxicon, 2014, 90, 191-198.	1.6	15
47	Bioaccessibility and changes on cylindrospermopsin concentration in edible mussels with storage and processing time. Food Control, 2016, 59, 567-574.	5.5	15
48	Purification and characterisation of adenosine nucleosidase from Coffea arabica young leaves. Phytochemistry, 2005, 66, 147-151.	2.9	13
49	A new method for the simultaneous determination of cyanotoxins (Microcystins and) Tj ETQq1 1 0.784314 rgBT	Overlock 1	10 Tf 50 2 <mark>62</mark>
50	The Quantitative Proteome of the Cement and Adhesive Gland of the Pedunculate Barnacle, Pollicipes pollicipes. International Journal of Molecular Sciences, 2020, 21, 2524.	4.1	13
51	Top-Down Proteomics and Farm Animal and Aquatic Sciences. Proteomes, 2016, 4, 38.	3.5	12
52	Characterization of planktonic and biofilm cells from two filamentous cyanobacteria using a shotgun proteomic approach. Biofouling, 2020, 36, 631-645.	2.2	12
53	Validation of a Method for Cylindrospermopsin Determination in Vegetables: Application to Real Samples Such as Lettuce (Lactuca sativa L.). Toxins, 2018, 10, 63.	3.4	11
54	Seaweed Essential Oils as a New Source of Bioactive Compounds for Cyanobacteria Growth Control: Innovative Ecological Biocontrol Approach. Toxins, 2020, 12, 527.	3.4	11

#	Article	IF	CITATIONS
55	Protective Role of Native Rhizospheric Soil Microbiota Against the Exposure to Microcystins Introduced into Soil-Plant System via Contaminated Irrigation Water and Health Risk Assessment. Toxins, 2021, 13, 118.	3.4	11
56	Effects of Chrysosporum (Aphanizomenon) ovalisporum extracts containing cylindrospermopsin on growth, photosynthetic capacity, and mineral content of carrots (Daucus carota). Ecotoxicology, 2017, 26, 22-31.	2.4	10
57	Effects of two toxic cyanobacterial crude extracts containing microcystin-LR and cylindrospermopsin on the growth and photosynthetic capacity of the microalga Parachlorella kessleri. Algal Research, 2018, 34, 198-208.	4.6	10
58	Potential control of toxic cyanobacteria blooms with Moroccan seaweed extracts. Environmental Science and Pollution Research, 2019, 26, 15218-15228.	5.3	10
59	Shotgun Proteomics of Ascidians Tunic Gives New Insights on Host–Microbe Interactions by Revealing Diverse Antimicrobial Peptides. Marine Drugs, 2020, 18, 362.	4.6	10
60	The wool proteome and fibre characteristics of three distinct genetic ovine breeds from Portugal. Journal of Proteomics, 2020, 225, 103853.	2.4	10
61	Harmful Cyanobacterial Blooms (HCBs): innovative green bioremediation process based on anti-cyanobacteria bioactive natural products. Archives of Microbiology, 2021, 203, 31-44.	2.2	10
62	Conopeptides from Cape Verde Conus crotchii. Marine Drugs, 2013, 11, 2203-2215.	4.6	9
63	Molecular Responses of Mussel Mytilus galloprovincialis Associated to Accumulation and Depuration of Marine Biotoxins Okadaic Acid and Dinophysistoxin-1 Revealed by Shotgun Proteomics. Frontiers in Marine Science, 2020, 7, .	2.5	9
64	The effect of weight loss on protein profiles of gastrocnemius muscle in rabbits: a study using 1D electrophoresis and peptide mass fingerprinting. Journal of Animal Physiology and Animal Nutrition, 2010, 94, 174-185.	2.2	8
65	Effects of the naturally-occurring contaminant microcystins on the Azolla filiculoides – Anabaena azollae symbiosis. Ecotoxicology and Environmental Safety, 2015, 118, 11-20.	6.0	8
66	Proteomic and Real-Time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models. Toxicon, 2016, 112, 22-28.	1.6	8
67	Modulation of hepatic glutathione transferases isoenzymes in three bivalve species exposed to purified microcystin-LR and Microcystis extracts. Toxicon, 2017, 137, 150-157.	1.6	8
68	GST transcriptional changes induced by a toxic Microcystis aeruginosa strain in two bivalve species during exposure and recovery phases. Ecotoxicology, 2018, 27, 1272-1280.	2.4	8
69	Moroccan actinobacteria with promising activity against toxic cyanobacteria Microcystis aeruginosa. Environmental Science and Pollution Research, 2021, 28, 235-245.	5.3	8
70	Proteogenomic Characterization of the Cement and Adhesive Gland of the Pelagic Gooseneck Barnacle Lepas anatifera. International Journal of Molecular Sciences, 2021, 22, 3370.	4.1	8
71	First Report on Cyanotoxin (MC-LR) Removal from Surface Water by Multi-Soil-Layering (MSL) Eco-Technology: Preliminary Results. Water (Switzerland), 2021, 13, 1403.	2.7	8
72	Role of Rhizospheric Microbiota as a Bioremediation Tool for the Protection of Soil-Plant Systems from Microcystins Phytotoxicity and Mitigating Toxin-Related Health Risk. Microorganisms, 2021, 9, 1747.	3.6	7

#	Article	IF	Citations
73	Comparison of Sample Preparation Methods for Shotgun Proteomic Studies in Aquaculture Species. Proteomes, 2021, 9, 46.	3.5	7
74	Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review. Toxins, 2017, 9, 175.	3.4	6
75	Proteomics in Aquaculture., 2017,, 279-295.		6
76	New Insights in Saccharomyces cerevisiae Response to the Cyanotoxin Microcystin-LR, Revealed by Proteomics and Gene Expression. Toxins, 2020, 12, 667.	3.4	6
77	Putative Antimicrobial Peptides of the Posterior Salivary Glands from the Cephalopod Octopus vulgaris Revealed by Exploring a Composite Protein Database. Antibiotics, 2020, 9, 757.	3.7	6
78	From Natural Xanthones to Synthetic C-1 Aminated 3,4-Dioxygenated Xanthones as Optimized Antifouling Agents. Marine Drugs, 2021, 19, 638.	4.6	6
79	Growth inhibition and microcystin accumulation in bush bean (Phaseolus vulgaris L.) plant irrigated with water containing toxic Chrooccocus minutus. Agricultural Water Management, 2022, 261, 107381.	5.6	6
80	The Queen Conch (Lobatus gigas) Proteome: A Valuable Tool for Biological Studies in Marine Gastropods. Protein Journal, 2019, 38, 628-639.	1.6	5
81	Physiological and Metabolic Responses of Marine Mussels Exposed to Toxic Cyanobacteria Microcystis aeruginosa and Chrysosporum ovalisporum. Toxins, 2020, 12, 196.	3.4	4
82	Applications of Proteomics in Aquaculture. , 2016, , 175-209.		3
83	Alterations in Mediterranean mussel (Mytilus galloprovincialis) composition exposed to cyanotoxins as revealed by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104970.	5.5	3
84	Transcriptomic Profile of the Cockle Cerastoderma edule Exposed to Seasonal Diarrhetic Shellfish Toxin Contamination. Toxins, 2021, 13, 784.	3.4	3
85	Effects of Irrigation with Microcystin-Containing Water on Growth, Physiology, and Antioxidant Defense in Strawberry Fragaria vulgaris under Hydroponic Culture. Toxins, 2022, 14, 198.	3.4	3
86	Review on Cyanobacterial Studies in Portugal: Current Impacts and Research Needs. Applied Sciences (Switzerland), 2021, 11, 4355.	2.5	2
87	Sample Preparation for 2DE Using Samples of Animal Origin. , 2018, , 37-53.		1
88	Data Employed in the Construction of a Composite Protein Database for Proteogenomic Analyses of Cephalopods Salivary Apparatus. Data, 2020, 5, 110.	2.3	1
89	Multi-Soil-Layering Technology: A New Approach to Remove Microcystis aeruginosa and Microcystins from Water. Water (Switzerland), 2022, 14, 686.	2.7	1