
## Cor de Wit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9393678/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Functional and structural adaptations of the coronary macro- and microvasculature to regular<br>aerobic exercise by activation of physiological, cellular, and molecular mechanisms: ESC Working<br>Group on Coronary Pathophysiology and Microcirculation position paper. Cardiovascular Research,<br>2022, 118, 357-371.                          | 1.8 | 19        |
| 2  | Mechanobiology of Arterial Hypertension. Cardiac and Vascular Biology, 2021, , 277-298.                                                                                                                                                                                                                                                             | 0.2 | 0         |
| 3  | The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls<br>peroxynitrite levels and tissue integrity. Proceedings of the National Academy of Sciences of the<br>United States of America, 2021, 118, .                                                                                                              | 3.3 | 25        |
| 4  | Expression of Connexin43 Stimulates Endothelial Angiogenesis Independently of Gap Junctional Communication In Vitro. International Journal of Molecular Sciences, 2021, 22, 7400.                                                                                                                                                                   | 1.8 | 12        |
| 5  | KATP channels and NO dilate redundantly intramuscular arterioles during electrical stimulation of the skeletal muscle in mice. Pflugers Archiv European Journal of Physiology, 2021, 473, 1795-1806.                                                                                                                                                | 1.3 | 2         |
| 6  | Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & amp; Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovascular Research, 2021, 117, 2705-2729. | 1.8 | 95        |
| 7  | Depression and coronary heart disease: 2018 position paper of the ESC working group on coronary pathophysiology and microcirculation. European Heart Journal, 2020, 41, 1687-1696.                                                                                                                                                                  | 1.0 | 203       |
| 8  | Endothelium-Derived Hyperpolarizing Factor and Myoendothelial Coupling: The in vivo Perspective.<br>Frontiers in Physiology, 2020, 11, 602930.                                                                                                                                                                                                      | 1.3 | 19        |
| 9  | The ESC Working Group on Coronary Pathophysiology and Microcirculation. European Heart Journal, 2020, 41, 2150-2151.                                                                                                                                                                                                                                | 1.0 | 1         |
| 10 | ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on â€~coronary microvascular dysfunction in cardiovascular disease'. Cardiovascular Research, 2020, 116, 741-755.                                                                                                                                                 | 1.8 | 147       |
| 11 | Impaired endothelium-mediated cerebrovascular reactivity promotes anxiety and respiration disorders<br>in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>1753-1761.                                                                                                                           | 3.3 | 39        |
| 12 | Basic Concepts of the Microcirculation. , 2020, , 3-20.                                                                                                                                                                                                                                                                                             |     | 0         |
| 13 | Angiotensin-converting-enzyme inhibitors in hemodynamic congestion: a meta-analysis of early studies. Clinical Research in Cardiology, 2019, 108, 1240-1248.                                                                                                                                                                                        | 1.5 | 11        |
| 14 | Preserved cardiovascular homeostasis despite blunted acetylcholineâ€induced dilation in mice with<br>endothelial muscarinic M3 receptor deletion. Acta Physiologica, 2019, 226, e13262.                                                                                                                                                             | 1.8 | 9         |
| 15 | Myoendothelial coupling through Cx40 contributes to <scp>EDH</scp> â€induced vasodilation in murine renal arteries: evidence from experiments and modelling. Acta Physiologica, 2018, 222, e12906.                                                                                                                                                  | 1.8 | 22        |
| 16 | A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis.<br>Nature Communications, 2018, 9, 4301.                                                                                                                                                                                                        | 5.8 | 32        |
| 17 | Mechanisms of Connexin-Related Lymphedema. Circulation Research, 2018, 123, 964-985.                                                                                                                                                                                                                                                                | 2.0 | 54        |
| 18 | Position paper of the European Society of Cardiology–working group of coronary pathophysiology<br>and microcirculation: obesity and heart disease. European Heart Journal, 2017, 38, 1951-1958.                                                                                                                                                     | 1.0 | 64        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Oxidant sensor in the cGMP-binding pocket of PKGIα regulates nitroxyl-mediated kinase activity.<br>Scientific Reports, 2017, 7, 9938.                                                                                                      | 1.6  | 22        |
| 20 | Communication Through Gap Junctions in the Endothelium. Advances in Pharmacology, 2016, 77, 209-240.                                                                                                                                       | 1.2  | 8         |
| 21 | Proatherosclerotic Effect of the α1-Subunit of Soluble Guanylyl Cyclase by Promoting Smooth Muscle<br>Phenotypic Switching. American Journal of Pathology, 2016, 186, 2220-2231.                                                           | 1.9  | 19        |
| 22 | Central Role of P2Y <sub>6</sub> UDP Receptor in Arteriolar Myogenic Tone. Arteriosclerosis,<br>Thrombosis, and Vascular Biology, 2016, 36, 1598-1606.                                                                                     | 1.1  | 64        |
| 23 | Real-time imaging of cCMP signals in platelets. BMC Pharmacology & Toxicology, 2015, 16, .                                                                                                                                                 | 1.0  | 0         |
| 24 | Flow Increase Is Decisive to Initiate Angiogenesis in Veins Exposed to Altered Hemodynamics. PLoS ONE, 2015, 10, e0117407.                                                                                                                 | 1.1  | 31        |
| 25 | Keep calm and carry on: miR-1298 prevents up-regulation of Cx43 and secures a quiescent vascular smooth muscle cell: FigureÂ1. Cardiovascular Research, 2015, 107, 407-409.                                                                | 1.8  | 7         |
| 26 | Two polymorphisms in the Cx40 promoter are associated with hypertension and left ventricular hypertrophy preferentially in men. Clinical and Experimental Hypertension, 2015, 37, 580-586.                                                 | 0.5  | 9         |
| 27 | Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical<br>implications on behalf of the working group on coronary pathophysiology and microcirculation.<br>European Heart Journal, 2015, 36, 3134-3146. | 1.0  | 177       |
| 28 | ADAMTS-7 Inhibits Re-endothelialization of Injured Arteries and Promotes Vascular Remodeling<br>Through Cleavage of Thrombospondin-1. Circulation, 2015, 131, 1191-1201.                                                                   | 1.6  | 125       |
| 29 | Exercise may be detrimental in hypertension: too much of a good thing!. Hypertension Research, 2015, 38, 644-645.                                                                                                                          | 1.5  | 1         |
| 30 | Correlative intravital imaging of cGMP signals and vasodilation in mice. Frontiers in Physiology, 2014, 5, 394.                                                                                                                            | 1.3  | 21        |
| 31 | Restoring a Critical Element in Renin-Producing Cells. Hypertension, 2014, 63, 1161-1162.                                                                                                                                                  | 1.3  | 0         |
| 32 | Presentation, management, and outcomes of ischaemic heart disease in women. Nature Reviews<br>Cardiology, 2013, 10, 508-518.                                                                                                               | 6.1  | 103       |
| 33 | Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature, 2013, 504,<br>432-436.                                                                                                                              | 13.7 | 230       |
| 34 | Transgenic Mice for cGMP Imaging. Circulation Research, 2013, 113, 365-371.                                                                                                                                                                | 2.0  | 66        |
| 35 | Activation of <scp>K<sub>Ca</sub></scp> 3.1 by <scp>SKA</scp> â€31 induces arteriolar dilatation and lowers blood pressure in normoâ€and hypertensive connexin40â€deficient mice. British Journal of Pharmacology, 2013, 170, 293-303.     | 2.7  | 43        |
| 36 | High Flow Conditions Increase Connexin43 Expression in a Rat Arteriovenous and Angioinductive Loop<br>Model. PLoS ONE, 2013, 8, e78782.                                                                                                    | 1.1  | 19        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Association of two polymorphisms in the Cx40 promoter with hypertension and leftventricular hypertrophy. FASEB Journal, 2013, 27, 678.10.                                                                                                                                      | 0.2 | 0         |
| 38 | Alterations in the nitric oxide / soluble guanylyl cyclase pathway enhance the risk of myocardial infarction. FASEB Journal, 2013, 27, 686.10.                                                                                                                                 | 0.2 | 0         |
| 39 | Defective Cx40 Maintains Cx37 Expression but Intact Cx40 Is Crucial for Conducted Dilations<br>Irrespective of Hypertension. Hypertension, 2012, 60, 1422-1429.                                                                                                                | 1.3 | 52        |
| 40 | Regulation of tumor growth and angiogenesis in colorectal cancer. European Surgery - Acta<br>Chirurgica Austriaca, 2012, 44, 336-340.                                                                                                                                          | 0.3 | 0         |
| 41 | Cell–Cell Communication Through Gap Junctions. , 2012, , 1259-1268.                                                                                                                                                                                                            |     | 0         |
| 42 | Pharmacological activation of KCa3.1/KCa2.3 channels produces endothelial hyperpolarization and lowers blood pressure in conscious dogs. British Journal of Pharmacology, 2012, 165, 223-234.                                                                                  | 2.7 | 60        |
| 43 | Hypoxic pulmonary vasoconstriction requires connexin 40–mediated endothelial signal conduction.<br>Journal of Clinical Investigation, 2012, 122, 4218-4230.                                                                                                                    | 3.9 | 134       |
| 44 | Connexin45 Is Expressed in Vascular Smooth Muscle but Its Function Remains Elusive. PLoS ONE, 2012,<br>7, e42287.                                                                                                                                                              | 1.1 | 34        |
| 45 | Ischaemic heart disease in women: are there sex differences in pathophysiology and risk factors?:<br>Position Paper from the Working Group on Coronary Pathophysiology and Microcirculation of the<br>European Society of Cardiology. Cardiovascular Research, 2011, 90, 9-17. | 1.8 | 242       |
| 46 | Distinct Endothelium-Derived Hyperpolarizing Factors Emerge In Vitro and In Vivo and Are Mediated in<br>Part via Connexin 40–Dependent Myoendothelial Coupling. Hypertension, 2011, 57, 802-808.                                                                               | 1.3 | 43        |
| 47 | The endothelium at the brink of calamity in storage disease: more than just overloaded with junk?.<br>Cardiovascular Research, 2011, 89, 258-259.                                                                                                                              | 1.8 | 3         |
| 48 | Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers<br>Archiv European Journal of Physiology, 2010, 459, 897-914.                                                                                                                   | 1.3 | 136       |
| 49 | Amplification of EDHFâ€ŧype vasodilatations in TRPC1â€deficient mice. British Journal of Pharmacology,<br>2010, 161, 1722-1733.                                                                                                                                                | 2.7 | 30        |
| 50 | Crucial importance of the endothelial K <sup>+</sup> channel SK3 and connexin40 in arteriolar dilations during skeletal muscle contraction. FASEB Journal, 2010, 24, 3572-3579.                                                                                                | 0.2 | 63        |
| 51 | Endothelial-Specific Deletion of Connexin40 Promotes Atherosclerosis by Increasing CD73-Dependent<br>Leukocyte Adhesion. Circulation, 2010, 121, 123-131.                                                                                                                      | 1.6 | 126       |
| 52 | Different pathways with distinct properties conduct dilations in the microcirculation in vivo.<br>Cardiovascular Research, 2010, 85, 604-613.                                                                                                                                  | 1.8 | 72        |
| 53 | Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension. Kidney International, 2010, 78, 762-768.                                                                                          | 2.6 | 71        |
| 54 | Semiautomatic Quantification of Angiogenesis. Journal of Surgical Research, 2010, 162, 132-139.                                                                                                                                                                                | 0.8 | 6         |

Cor de Wit

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A critical role for connexin 40 in hypoxia induced pulmonary vasoconstriction. FASEB Journal, 2010, 24, 795.7.                                                                                                                        | 0.2 | 0         |
| 56 | Connexin 40 Mediates the Tubuloglomerular Feedback Contribution to Renal Blood Flow<br>Autoregulation. Journal of the American Society of Nephrology: JASN, 2009, 20, 1577-1585.                                                      | 3.0 | 51        |
| 57 | Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo. Cardiovascular Research, 2009, 82, 476-483.                                            | 1.8 | 72        |
| 58 | Genetic Deficit of SK3 and IK1 Channels Disrupts the Endothelium-Derived Hyperpolarizing Factor Vasodilator Pathway and Causes Hypertension. Circulation, 2009, 119, 2323-2332.                                                       | 1.6 | 215       |
| 59 | Substitution of connexin40 with connexin45 prevents hyperreninemia and attenuates hypertension.<br>Kidney International, 2009, 75, 482-489.                                                                                           | 2.6 | 50        |
| 60 | Connexins in the Vasculature. , 2009, , 457-468.                                                                                                                                                                                      |     | 1         |
| 61 | Impaired Renal Blood Flow Autoregulation due to Compromised Tubuloglomerular Feedback in Mice<br>Lacking Connexin 40. FASEB Journal, 2009, 23, 804.11.                                                                                | 0.2 | 0         |
| 62 | Connexin 40 is essential for hypoxic pulmonary vasoconstriction. FASEB Journal, 2009, 23, 1002.7.                                                                                                                                     | 0.2 | 0         |
| 63 | Signaling across Myoendothelial Gap Junctions—Fact or fiction?. Cell Communication and Adhesion,<br>2008, 15, 231-245.                                                                                                                | 1.0 | 50        |
| 64 | A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovascular Research, 2008, 80, 165-174.                                                                          | 1.8 | 94        |
| 65 | Gap junctions synchronize vascular tone within the microcirculation. Pharmacological Reports, 2008, 60, 68-74.                                                                                                                        | 1.5 | 50        |
| 66 | EDHF and Gap Junctions: Important Regulators of Vascular Tone Within the Microcirculation.<br>Current Pharmaceutical Biotechnology, 2007, 8, 11-25.                                                                                   | 0.9 | 60        |
| 67 | Endogenous and exogenous NO attenuates conduction of vasoconstrictions along arterioles in the microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2341-H2348.                           | 1.5 | 23        |
| 68 | Lack of Connexin 40 Causes Displacement of Renin-Producing Cells from Afferent Arterioles to the<br>Extraglomerular Mesangium. Journal of the American Society of Nephrology: JASN, 2007, 18, 1103-1111.                              | 3.0 | 104       |
| 69 | Increased expression of cyclooxygenase 2 contributes to aberrant renin production in connexin<br>40-deficient kidneys. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2007, 293, R1781-R1786. | 0.9 | 14        |
| 70 | Closing the Gap at Hot Spots. Circulation Research, 2007, 100, 931-933.                                                                                                                                                               | 2.0 | 6         |
| 71 | Connexin45 Cannot Replace the Function of Connexin40 in Conducting Endothelium-Dependent<br>Dilations Along Arterioles. Circulation Research, 2007, 101, 1292-1299.                                                                   | 2.0 | 87        |
| 72 | Connexin40 Is Essential for the Pressure Control of Renin Synthesis and Secretion. Circulation Research, 2007, 100, 556-563.                                                                                                          | 2.0 | 197       |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Gap junctional communication via connexin40 is essential for the pressure control of the renin system. FASEB Journal, 2007, 21, A502.                                                                                                    | 0.2 | 3         |
| 74 | Connexin-Dependent Communication within the Vascular Wall: Contribution to the Control of Arteriolar Diameter. , 2006, 42, 268-283.                                                                                                      |     | 46        |
| 75 | Impaired Endothelium-Derived Hyperpolarizing Factor-Mediated Dilations and Increased Blood<br>Pressure in Mice Deficient of the Intermediate-Conductance Ca 2+ -Activated K + Channel. Circulation<br>Research, 2006, 99, 537-544.       | 2.0 | 231       |
| 76 | Endothelial mediators and communication through vascular gap junctions. Biological Chemistry, 2006, 387, 3-9.                                                                                                                            | 1.2 | 65        |
| 77 | Different mechanisms induce remote responses: Acetylcholine versus adenosine. FASEB Journal, 2006, 20, .                                                                                                                                 | 0.2 | 0         |
| 78 | Myoendothelial Coupling Is Not Prominent in Arterioles Within the Mouse Cremaster<br>Microcirculation In Vivo. Circulation Research, 2005, 97, 781-788.                                                                                  | 2.0 | 81        |
| 79 | Intact Endothelium-Dependent Dilation and Conducted Responses in Resistance Vessels of<br>Hypercholesterolemic Mice in vivo. Journal of Vascular Research, 2005, 42, 475-482.                                                            | 0.6 | 71        |
| 80 | Connexins Pave the Way for Vascular Communication. Physiology, 2004, 19, 148-153.                                                                                                                                                        | 1.6 | 36        |
| 81 | cGMP-Dependent Protein Kinase Mediates NO- but not Acetylcholine-Induced Dilations in Resistance<br>Vessels In Vivo. Hypertension, 2004, 44, 952-955.                                                                                    | 1.3 | 72        |
| 82 | Retinoic acid treatment protects MRL/lpr lupus mice from the development of glomerular disease.<br>Kidney International, 2004, 66, 1018-1028.                                                                                            | 2.6 | 79        |
| 83 | Nitric Oxide-Induced Decrease in Calcium Sensitivity of Resistance Arteries Is Attributable to<br>Activation of the Myosin Light Chain Phosphatase and Antagonized by the RhoA/Rho Kinase Pathway.<br>Circulation, 2003, 107, 3081-3087. | 1.6 | 128       |
| 84 | Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion.<br>Physiological Genomics, 2003, 13, 169-177.                                                                                          | 1.0 | 184       |
| 85 | Angiotensin Inhibition Reduces Glomerular Damage and Renal Chemokine Expression in MRL/lpr Mice.<br>Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 275-281.                                                           | 1.3 | 45        |
| 86 | Magnetofection—A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo.<br>Molecular Therapy, 2003, 7, 700-710.                                                                                              | 3.7 | 179       |
| 87 | EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster<br>arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H996-H1004.                               | 1.5 | 80        |
| 88 | Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis, 2001, 29, 1-13.                                                                                                                       | 0.8 | 162       |
| 89 | Chronic increases in transmural pressure reduce NO-mediated dilations in isolated resistance arteries of the hamster. Acta Physiologica Scandinavica, 2000, 168, 113-117.                                                                | 2.3 | 8         |
| 90 | Large arterioles in the control of blood flow: role of endothelium-dependent dilation. Acta<br>Physiologica Scandinavica, 2000, 168, 505-510.                                                                                            | 2.3 | 78        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Antisense oligonucleotides against cytochrome P450 2C8 attenuate EDHFâ€mediated Ca 2+ changes and dilation in isolated resistance arteries. FASEB Journal, 2000, 14, 255-260.                                                    | 0.2 | 96        |
| 92  | Intact endothelial and smooth muscle function in small resistance arteries after 48 h in vessel culture. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1434-H1439.                              | 1.5 | 24        |
| 93  | Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11609-11613. | 3.3 | 238       |
| 94  | Impaired Conduction of Vasodilation Along Arterioles in Connexin40-Deficient Mice. Circulation Research, 2000, 86, 649-655.                                                                                                      | 2.0 | 313       |
| 95  | Oxidized LDL Increases the Sensitivity of the Contractile Apparatus in Isolated Resistance Arteries for<br>Ca <sup>2+</sup> via a Rho- and Rho Kinase–Dependent Mechanism. Circulation, 2000, 102, 2402-2410.                    | 1.6 | 37        |
| 96  | Pentobarbital-sensitive EDHF comediates ACh-induced arteriolar dilation in the hamster<br>microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276,<br>H1527-H1534.                        | 1.5 | 38        |
| 97  | A Unique Role of NO in the Control of Blood Flow. Physiology, 1999, 14, 74-80.                                                                                                                                                   | 1.6 | 21        |
| 98  | Endothelium-derived hyperpolarizing factor but not NO reduces smooth muscle Ca2+ during acetylcholine-induced dilation of microvessels. British Journal of Pharmacology, 1999, 128, 124-134.                                     | 2.7 | 87        |
| 99  | Myogenic effects enhance norepinephrine constriction: Inhibition by nitric oxide and felodipine.<br>Kidney International, 1998, 54, S122-S126.                                                                                   | 2.6 | 5         |
| 100 | Nitric Oxide Opposes Myogenic Pressure Responses Predominantly in Large Arterioles In Vivo.<br>Hypertension, 1998, 31, 787-794.                                                                                                  | 1.3 | 58        |
| 101 | Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo. Pflugers Archiv European Journal of Physiology, 1997, 434, 354-361.                                      | 1.3 | 77        |
| 102 | Synergistic action of vasodilators that increase cGMP and cAMP in the hamster cremaster microcirculation. Cardiovascular Research, 1994, 28, 1513-1518.                                                                          | 1.8 | 49        |
| 103 | Mediator Role of Prostaglandins in Acetylcholine-Induced Vasodilation and Control of Resting<br>Vascular Diameter in the Hamster Cremaster Microcirculation in vivo. Journal of Vascular Research,<br>1993, 30, 272-278.         | 0.6 | 33        |
| 104 | Experimental studies on the nephrotoxicity of amphotericin B in rats. Journal of Antimicrobial Chemotherapy, 1991, 28, 271-281.                                                                                                  | 1.3 | 12        |
| 105 | Experimental studies on nephrotoxicity and pharmacokinetics of LY 146032 (daptomycin) in rats.<br>Journal of Antimicrobial Chemotherapy, 1990, 25, 635-643.                                                                      | 1.3 | 13        |