
Geanncarlo Lugo-Villarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9393581/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycobacteria–host interactions in human bronchiolar airway organoids. Molecular Microbiology, 2022, 117, 682-692.	1.2	32
2	Dysregulation of the IFN-I signaling pathway by <i>Mycobacterium tuberculosis</i> leads to exacerbation of HIV-1 infection of macrophages. Journal of Leukocyte Biology, 2022, 112, 1329-1342.	1.5	6
3	Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Research Reviews, 2021, 66, 101235.	5.0	58
4	Dissemination of <i>Mycobacterium tuberculosis</i> is associated to a <i>SIGLEC1</i> null variant that limits antigen exchange via trafficking extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12046.	5.5	9
5	Impact of type 2 diabetes on the capacity of human macrophages infected with <i>Mycobacterium tuberculosis</i> toÂmodulate monocyte differentiation through aÂbystanderÂeffect. Immunology and Cell Biology, 2021, 99, 1026-1039.	1.0	5
6	Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathogens, 2021, 17, e1009927.	2.1	10
7	A Pulmonary <i>Lactobacillus murinus</i> Strain Induces Th17 and RORÎ ³ t+ Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis. Journal of Immunology, 2021, 207, 1857-1870.	0.4	17
8	Modulation of Cystatin C in Human Macrophages Improves Anti-Mycobacterial Immune Responses to Mycobacterium tuberculosis Infection and Coinfection With HIV. Frontiers in Immunology, 2021, 12, 742822.	2.2	12
9	Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation. PLoS Pathogens, 2020, 16, e1008929.	2.1	21
10	Type 2 diabetes mellitus metabolic control correlates with the phenotype of human monocytes and monocyte-derived macrophages. Journal of Diabetes and Its Complications, 2020, 34, 107708.	1.2	15
11	Host-Derived Lipids from Tuberculous Pleurisy Impair Macrophage Microbicidal-Associated Metabolic Activity. Cell Reports, 2020, 33, 108547.	2.9	18
12	Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. ELife, 2020, 9, .	2.8	31
13	Variability in the virulence of specific Mycobacterium tuberculosis clinical isolates alters the capacity of human dendritic cells to signal for T cells. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190102.	0.8	5
14	Editorial: The Mononuclear Phagocyte System in Infectious Disease. Frontiers in Immunology, 2019, 10, 1443.	2.2	10
15	Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Reports, 2019, 26, 3586-3599.e7.	2.9	76
16	The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cellular Microbiology, 2018, 20, e12966.	1.1	287
17	Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e170326.	0.8	38
18	Tunneling Nanotubes: Intimate Communication between Myeloid Cells. Frontiers in Immunology, 2018, 9, 43.	2.2	109

#	Article	IF	CITATIONS
19	Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation. Frontiers in Immunology, 2018, 9, 459.	2.2	40
20	Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells. Frontiers in Immunology, 2018, 9, 846.	2.2	37
21	The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 1123.	2.2	51
22	C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E540-E549.	3.3	67
23	Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages. Scientific Reports, 2016, 6, 32247.	1.6	75
24	Pyroptosis of resident macrophages differentially orchestrates inflammatory responses to <i>Staphylococcus aureus</i> in resistant and susceptible mice. European Journal of Immunology, 2015, 45, 794-806.	1.6	24
25	Diverging biological roles among human monocyte subsets in the context of tuberculosis infection. Clinical Science, 2015, 129, 319-330.	1.8	39
26	Collectin CL-LK Is a Novel Soluble Pattern Recognition Receptor for Mycobacterium tuberculosis. PLoS ONE, 2015, 10, e0132692.	1.1	27
27	<scp>SIGN</scp> ing a symbiotic treaty with gutÂmicrobiota. EMBO Journal, 2015, 34, 829-831.	3.5	3
28	Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16+ monocyte population via the IL-10/STAT3 axis. Cell Research, 2015, 25, 1333-1351.	5.7	127
29	Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids. Frontiers in Cellular and Infection Microbiology, 2014, 4, 173.	1.8	47
30	A genomic portrait of the genetic architecture and regulatory impact of microRNA expression in response to infection. Genome Research, 2014, 24, 850-859.	2.4	60
31	Manipulation of the Mononuclear Phagocyte System by Mycobacterium tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018549-a018549.	2.9	31
32	Of Clots and Granulomas: Platelets are New Players in Immunity to Tuberculosis. Journal of Infectious Diseases, 2014, 210, 1687-1690.	1.9	6
33	An efficient siRNAâ€mediated gene silencing in primary human monocytes, dendritic cells and macrophages. Immunology and Cell Biology, 2014, 92, 699-708.	1.0	94
34	Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nature Chemical Biology, 2013, 9, 674-676.	3.9	95
35	Dressed not to kill: <scp>CD</scp> 16 ⁺ monocytes impair immune defence against tuberculosis. European Journal of Immunology, 2013, 43, 327-330.	1.6	9
36	The C-type Lectin Receptors Dectin-1, MR, and SIGNR3 Contribute Both Positively and Negatively to the Macrophage Response to Leishmania infantum. Immunity, 2013, 38, 1038-1049.	6.6	134

#	Article	IF	CITATIONS
37	Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Frontiers in Cellular and Infection Microbiology, 2013, 3, 19.	1.8	76
38	Metallobiology of host–pathogen interactions: an intoxicating new insight. Trends in Microbiology, 2012, 20, 106-112.	3.5	107
39	Emerging Trends in the Formation and Function of Tuberculosis Granulomas. Frontiers in Immunology, 2012, 3, 405.	2.2	42
40	Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host and Microbe, 2011, 10, 248-259.	5.1	304
41	Small Molecule–Mediated Activation of the Integrin CD11b/CD18 Reduces Inflammatory Disease. Science Signaling, 2011, 4, ra57.	1.6	118
42	C-type lectins with a sweet spot for <i>Mycobacterium tuberculosis</i> . European Journal of Microbiology and Immunology, 2011, 1, 25-40.	1.5	32
43	Editorial: How to play tag? DC-SIGN shows the way!. Journal of Leukocyte Biology, 2011, 89, 321-323.	1.5	1
44	Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV. Frontiers in Immunology, 2011, 2, 43.	2.2	115
45	Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood, 2010, 116, 3944-3954.	0.6	147
46	Identification of dendritic antigen-presenting cells in the zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15850-15855.	3.3	222
47	T-Bet Plays a Key Role in NK-Mediated Control of Melanoma Metastatic Disease. Journal of Immunology, 2008, 180, 8004-8010.	0.4	86
48	Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System. Cell, 2007, 131, 33-45.	13.5	837
49	Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells. Journal of Clinical Investigation, 2006, 116, 414-421.	3.9	102
50	Cutting Edge: STAT1 and T-bet Play Distinct Roles in Determining Outcome of Visceral Leishmaniasis Caused by <i>Leishmania donovani</i> . Journal of Immunology, 2006, 177, 22-25.	0.4	56
51	The adjuvant activity of CpG DNA requires T-bet expression in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13248-13253.	3.3	49
52	T-bet is required for optimal production of IFN-Â and antigen-specific T cell activation by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7749-7754.	3.3	234
53	A Mammalian Homolog of Drosophila schnurri, KRC, Regulates TNF Receptor-Driven Responses and Interacts with TRAF2. Molecular Cell, 2002, 9, 121-131.	4.5	65
54	Individual VH promoters vary in strength, but the frequency of rearrangement of those VH genes does not correlate with promoter strength nor enhancer-independence. Molecular Immunology, 2000, 37, 29-39.	1.0	45

#	Article	IF	CITATIONS
55	Sequence of the Spacer in the Recombination Signal Sequence Affects V(D)J Rearrangement Frequency and Correlates with Nonrandom Vκ Usage In Vivo. Journal of Experimental Medicine, 1998, 187, 1495-1503.	4.2	77
56	A defective Vkappa A2 allele in Navajos which may play a role in increased susceptibility to haemophilus influenzae type b disease Journal of Clinical Investigation, 1996, 97, 2277-2282.	3.9	110
57	Tuberculosis Boosts HIV-1 Production by Macrophages Through IL-10/STAT3-Dependent Tunneling Nanotube Formation. SSRN Electronic Journal, 0, , .	0.4	1