Dag Chun Standnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/939351/publications.pdf Version: 2024-02-01

DAC CHUN STANDNES

#	Article	IF	CITATIONS
1	An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 228-233.	4.7	252
2	Literature review of implemented polymer field projects. Journal of Petroleum Science and Engineering, 2014, 122, 761-775.	4.2	189
3	Experimental Study of the Impact of Boundary Conditions on Oil Recovery by Co-Current and Counter-Current Spontaneous Imbibition. Energy & Fuels, 2004, 18, 271-282.	5.1	58
4	An Analytic Solution for the Frontal Flow Period in 1D Counter-Current Spontaneous Imbibition into Fractured Porous Media Including Gravity and Wettability Effects. Transport in Porous Media, 2011, 89, 49-62.	2.6	54
5	Scaling spontaneous imbibition of water data accounting for fluid viscosities. Journal of Petroleum Science and Engineering, 2010, 73, 214-219.	4.2	35
6	Analysis of the Impact of Fluid Viscosities on the Rate of Countercurrent Spontaneous Imbibition. Energy & Fuels, 2017, 31, 6928-6940.	5.1	34
7	A Novel Relative Permeability Model Based on Mixture Theory Approach Accounting for Solid–Fluid and Fluid–Fluid Interactions. Transport in Porous Media, 2017, 119, 707-738.	2.6	32
8	Cocurrent Spontaneous Imbibition In Porous Media With the Dynamics of Viscous Coupling and Capillary Backpressure. SPE Journal, 2019, 24, 158-177.	3.1	32
9	Index for Characterizing Wettability of Reservoir Rocks Based on Spontaneous Imbibition Recovery Data. Energy & Fuels, 2013, 27, 7360-7368.	5.1	29
10	Calculation of Viscosity Scaling Groups for Spontaneous Imbibition of Water Using Average Diffusivity Coefficients. Energy & Fuels, 2009, 23, 2149-2156.	5.1	26
11	Scaling Group for Spontaneous Imbibition Including Gravity. Energy & Fuels, 2010, 24, 2980-2984.	5.1	24
12	Spontaneous imbibition of water into cylindrical cores with high aspect ratio: Numerical and experimental results. Journal of Petroleum Science and Engineering, 2006, 50, 151-160.	4.2	21
13	Study on Non-equilibrium Effects during Spontaneous Imbibition. Energy & Fuels, 2011, 25, 3053-3059.	5.1	21
14	A single-parameter fit correlation for estimation of oil recovery from fractured water-wet reservoirs. Journal of Petroleum Science and Engineering, 2010, 71, 19-22.	4.2	16
15	Estimation of Imbibition Capillary Pressure Curves from Spontaneous Imbibition Data. Energy & Fuels, 2010, 24, 1081-1087.	5.1	9
16	Implications of Molecular Thermal Fluctuations on Fluid Flow in Porous Media and Its Relevance to Absolute Permeability. Energy & Fuels, 2018, 32, 8024-8039.	5.1	8
17	Interpretation of 1-D Counter-Current Spontaneous Imbibition Processes Using Microscopic Diffusion Theory and a Modified Buckley–Leverett Approach. Energy & Fuels, 2020, 34, 5868-5883.	5.1	7
18	Derivation of the Conventional and a Generalized Form of Darcy's Law from the Langevin Equation. Transport in Porous Media, 2022, 141, 1-15.	2.6	7

#	Article	IF	CITATIONS
19	A Thermodynamic Analysis of the Impact of Temperature on the Capillary Pressure in Porous Media. Water Resources Research, 2021, 57, e2021WR029887.	4.2	6
20	Co-Current Spontaneous Imbibition in Porous Media with the Dynamics of Viscous Coupling and Capillary Back Pressure. , 2018, , .		5
21	Dissipation Mechanisms for Fluids and Objects in Relative Motion Described by the Navier–Stokes Equation. ACS Omega, 2021, 6, 18598-18609.	3.5	4
22	A phenomenological description of the transient single-phase pore velocity period using the resistance force-velocity relationship. Advances in Geo-Energy Research, 2022, 6, 104-110.	6.0	1