
Anna Szakiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/939336/publications.pdf Version: 2024-02-01

ANNA SZAVIEL

#	Article	IF	CITATIONS
1	Effect of Ethylene and Abscisic Acid on Steroid and Triterpenoid Synthesis in Calendula officinalis Hairy Roots and Saponin Release to the Culture Medium. Plants, 2022, 11, 303.	1.6	15
2	Metabolic Modifications in Terpenoid and Steroid Pathways Triggered by Methyl Jasmonate in Taxus × media Hairy Roots. Plants, 2022, 11, 1120.	1.6	8
3	Modulation of Steroid and Triterpenoid Metabolism in Calendula officinalis Plants and Hairy Root Cultures Exposed to Cadmium Stress. International Journal of Molecular Sciences, 2022, 23, 5640.	1.8	10
4	Application of Priming Strategy for Enhanced Paclitaxel Biosynthesis in Taxus × Media Hairy Root Cultures. Cells, 2022, 11, 2062.	1.8	6
5	Three Types of Elicitors Induce Grapevine Resistance against Downy Mildew via Common and Specific Immune Responses. Journal of Agricultural and Food Chemistry, 2021, 69, 1781-1795.	2.4	19
6	Calendula officinalis Triterpenoid Saponins Impact the Immune Recognition of Proteins in Parasitic Nematodes. Pathogens, 2021, 10, 296.	1.2	2
7	Distribution of Triterpenoids and Steroids in Developing Rugosa Rose (Rosarugosa Thunb.) Accessory Fruit. Molecules, 2021, 26, 5158.	1.7	9
8	Enhancement of Phytosterol and Triterpenoid Production in Plant Hairy Root Cultures—Simultaneous Stimulation or Competition?. Plants, 2021, 10, 2028.	1.6	18
9	The restructuring of grape berry waxes by calcium changes the surface microbiota. Food Research International, 2021, 150, 110812.	2.9	6
10	Genome-Based Insights into the Production of Carotenoids by Antarctic Bacteria, Planococcus sp. ANT_H30 and Rhodococcus sp. ANT_H53B. Molecules, 2020, 25, 4357.	1.7	13
11	The role of sterols in plant response to abiotic stress. Phytochemistry Reviews, 2020, 19, 1525-1538.	3.1	100
12	Variations in Triterpenoid Deposition in Cuticular Waxes during Development and Maturation of Selected Fruits of Rosaceae Family. International Journal of Molecular Sciences, 2020, 21, 9762.	1.8	18
13	Modifications of Steroid and Triterpenoid Metabolism Triggered by Abiotic Elicitors in Marigold (Calendula officinalis L.) in Vitro Hairy Root Cultures. , 2020, , .		0
14	Influence of Selected Abiotic Factors on Triterpenoid Biosynthesis and Saponin Secretion in Marigold (Calendula officinalis L.) in Vitro Hairy Root Cultures. Molecules, 2019, 24, 2907.	1.7	22
15	Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development. Molecules, 2019, 24, 3826.	1.7	25
16	Comparison of steroids and triterpenoids in leaf cuticular waxes of selected Polish and Russian cultivars and genotypes of edible honeysuckle. Phytochemistry Letters, 2019, 30, 238-244.	0.6	12
17	GC-MS analysis of steroids and triterpenoids occurring in leaves and tubers of Tamus edulis Lowe. Phytochemistry Letters, 2019, 30, 231-234.	0.6	5
18	Impact of different elicitors on grapevine leaf metabolism monitored by 1H NMR spectroscopy. Metabolomics, 2019, 15, 67.	1.4	11

#	Article	IF	CITATIONS
19	Triterpenoid profiles of the leaves of wild and domesticated grapevines. Phytochemistry Letters, 2019, 30, 302-308.	0.6	5
20	Effect of jasmonic acid and chitosan on triterpenoid production in Calendula officinalis hairy root cultures. Phytochemistry Letters, 2019, 31, 5-11.	0.6	44
21	Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). Journal of Herbal Medicine, 2019, 16, 100237.	1.0	33

Increased synthesis of a new oleanane-type saponin in hairy roots of marigold ($\langle i \rangle$ Calendula) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622

		1.0	,
23	Extraction of Triterpenic Acids and Phytosterols from Apple Pomace with Supercritical Carbon Dioxide: Impact of Process Parameters, Modelling of Kinetics, and Scaling-Up Study. Molecules, 2018, 23, 2790.	1.7	26
24	Comparison of the profiles of non-glycosylated triterpenoids from leaves of plants of selected species of genus Dioscorea. Phytochemistry Letters, 2017, 20, 350-355.	0.6	10
25	Triterpenoid profile of fruit and leaf cuticular waxes of edible honeysuckle Lonicera caerulea var. kamtschatica. Acta Societatis Botanicorum Poloniae, 2017, 86, .	0.8	16
26	Characterization of triterpenoid profiles and triterpene synthase expression in the leaves of eight Vitis vinifera cultivars grown in the Upper Rhine Valley. Journal of Plant Research, 2016, 129, 499-512.	1.2	29
27	The content of free and esterified triterpenoids of the native marigold (Calendula officinalis) plant and its modifications in in vitro cultures. Phytochemistry Letters, 2015, 11, 410-417.	0.6	12
28	Changes in the Triterpenoid Content of Cuticular Waxes during Fruit Ripening of Eight Grape (<i>Vitis) Tj ETQq0 2014, 62, 7998-8007.</i>	0 0 rgBT / 2.4	Overlock 1 86
29	Triterpenoid profile of flower and leaf cuticular waxes of heather <i>Calluna vulgaris</i> . Natural Product Research, 2013, 27, 1404-1407.	1.0	25
30	Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochemistry Reviews, 2012, 11, 263-284.	3.1	199
31	Triterpenoid Content of Berries and Leaves of Bilberry Vaccinium myrtillus from Finland and Poland. Journal of Agricultural and Food Chemistry, 2012, 60, 11839-11849.	2.4	60
32	Comparison of the Triterpenoid Content of Berries and Leaves of Lingonberry Vaccinium vitis-idaea from Finland and Poland. Journal of Agricultural and Food Chemistry, 2012, 60, 4994-5002.	2.4	73
33	Influence of environmental biotic factors on the content of saponins in plants. Phytochemistry Reviews, 2011, 10, 493-502.	3.1	53
34	Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 2011, 10, 471-491.	3.1	252
35	Isolation and biological activities of lyoniside from rhizomes and stems of Vaccinium myrtillus. Phytochemistry Letters, 2011, 4, 138-143.	0.6	20
36	Antibacterial and Antiparasitic Activity of Oleanolic Acid and its Glycosides isolated from Marigold (<i>Calendula officinalis</i>). Planta Medica, 2008, 74, 1709-1715.	0.7	74

3

ANNA SZAKIEL

#	Article	IF	CITATIONS
37	Distribution of triterpene acids and their derivatives in organs of cowberry (Vaccinium vitis-idaea L.) plant Acta Biochimica Polonica, 2007, 54, 733-740.	0.3	27
38	Distribution of triterpene acids and their derivatives in organs of cowberry (Vaccinium vitis-idaea L.) plant. Acta Biochimica Polonica, 2007, 54, 733-40.	0.3	6
39	Analysis of gypsogenin saponins in homeopathic tinctures. Acta Biochimica Polonica, 2007, 54, 853-6.	0.3	1
40	Biosynthesis of oleanolic acid glycosides in protoplasts isolated from Calendula officinalis L. roots. Acta Physiologiae Plantarum, 2006, 28, 217-223.	1.0	1
41	Saponins in Calendula officinalis L. – Structure, Biosynthesis, Transport and Biological Activity. Phytochemistry Reviews, 2005, 4, 151-158.	3.1	62
42	Metabolism of [3-3H]oleanolic acid in Calendula officinalis L. roots. Acta Physiologiae Plantarum, 2003, 25, 311-317.	1.0	8
43	Biosynthesis of oleanolic acid and its glycosides in Calendula officinalis suspension culture. Plant Physiology and Biochemistry, 2003, 41, 271-275.	2.8	18
44	The mechanism of oleanolic acid monoglycosides transport into vacuoles isolated from Calendula officinalis leaf protoplasts. Plant Physiology and Biochemistry, 2002, 40, 203-209.	2.8	9
45	The transport of [3-3H]oleanolic acid and its monoglycosides to isolated vacuoles of protoplasts from Calendula officinalis leaves. Phytochemistry, 1992, 31, 2993-2997.	1.4	4
46	The metabolism of [3-3H]oleanolic acid and its monoglycosides in cytoplasm and vacuole of protoplasts isolated from Calendula officinalis leaves. Phytochemistry, 1991, 30, 3909-3912.	1.4	3
47	Distribution of oleanolic acid glycosides in vacuoles and cell walls isolated from protoplasts and cells of Calendula officinalis leaves. Steroids, 1989, 53, 501-511.	0.8	10
48	The metabolism of [3â^'3H]oleanolic acid-3-O-mono-[14C]glucoside in isolated cells from Calendula officinalis leaves. Phytochemistry, 1985, 24, 1713-1715.	1.4	6